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a b s t r a c t

This article introduces the DPG-star (from now on, denoted DPG*) finite element method.
It is a method that is in some sense dual to the discontinuous Petrov–Galerkin (DPG)
method. The DPG methodology can be viewed as a means to solve an overdetermined
discretization of a boundary value problem. In the same vein, the DPG* methodology is a
means to solve an underdetermined discretization. These two viewpoints are developed
by embedding the same operator equation into two different saddle-point problems.
The analyses of the two problems have many common elements. Comparison to other
methods in the literature round out the newly garnered perspective. Notably, DPG*
and DPG methods can be seen as generalizations of LL∗ and least-squares methods,
respectively. A priori error analysis and a posteriori error control for the DPG* method
are considered in detail. Reports of several numerical experiments are provided which
demonstrate the essential features of the new method. A notable difference between the
results from the DPG* and DPG analyses is that the convergence rates of the former are
limited by the regularity of an extraneous Lagrange multiplier variable.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The ideal Discontinuous Petrov–Galerkin (DPG) Method with Optimal Test Functions [1,2] admits three interpretations [3].
First, it can be viewed as a Petrov–Galerkin (PG) discretization in which optimal test functions are computed on the fly.
Here, the word ‘‘optimal’’ refers to the fact that the test functions realize the supremum in the discrete inf–sup stability
condition and, therefore, the PG discretization automatically inherits the stability of the continuous method. The DPG
method can also be viewed as a minimum residual method in which the residual is measured in a dual norm implied by
an underlying test norm. Finally, the DPG method can be viewed also as a mixed method [4] wherein one simultaneously
solves for the Riesz representation of the residual — the so-called error representation function — and the approximate
solution. All three equivalent interpretations involve the inversion of a Riesz operator on the test space which, in general,
cannot be done exactly and has to be approximated. This naturally leads to the introduction of an enriched or search
test space — having dimension larger than that of the latent trial space — and a discretized Riesz operator. In this way,
the corresponding practical DPG method retains its three interpretations, although now with approximate optimal test
functions, an approximate residual, and an approximate error representation function [5–7].

In the DPG method, the word ‘‘discontinuous’’ corresponds to the use of discontinuous, but conforming, test functions
(from broken spaces) which make the whole methodology computationally efficient. These broken spaces also naturally
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lead to (hybridized) interface solution variables. Broken space formulations provide a foundation for the DPG methodology
and can be developed for any well-posed variational formulation [7].

Originally motivated by the duality theory in [8], in this article, the DPG methodology is expanded on by reconsidering
how a given operator equation can be embedded into a DPG-type saddle-point problem. In turn, the minimum residual
principle underpinning DPG methods can be discarded for a minimum norm principle and a dual class of methods
(i.e. DPG* methods1) can be introduced. Ultimately, an entire class of stable DPG-type mixed methods can be proposed,
simply by changing loads in the saddle-point problem and the interpretation of the corresponding solution variables. This
broad perspective can help relate several different methods, including weakly conforming least squares methods [10]
and LL∗ methods [11] to the existing DPG theory. In addition to being a mathematical curiosity, the DPG* framework
rounds out the a priori error analysis of DPG methods in weak norms considered in previous articles (e.g., [12–14]), is
instrumental in goal-oriented a posteriori error analysis of DPG methods [8], and may be used to design new adjoint
methods with DPG [15], such as for the solution of optimal control problems.

This article provides a number of important a priori error analysis results for DPG* methods. Unlike standard DPG
methods, the convergence rate of a DPG* solution is not controlled solely by the regularity of the solution itself, but
instead also by the regularity of a Lagrange multiplier variable found in the corresponding saddle-point formulation. This
article also expands on the recent a posteriori error estimation theory first introduced in [8] and re-establishes much of
Repin, Sauter, and Smolianski’s abstract a posteriori theory for mixed methods [16] in the present context. In addition, it
includes several standard numerical examples to verify the theory for DPG* methods, including one example employing
hp-adaptive mesh refinement. This work is part of the PhD thesis [15].

2. The DPG and DPG* methods

2.1. Operator equations

Central to this paper are the twin relatives of the operator equation

Bu = ℓ, (1)

given in (2) and (3). Here B : U → V ′ is a bounded linear operator from a Hilbert space U to the dual of a Hilbert space
V , ℓ ∈ V ′ is given, and u ∈ U is to be found. All spaces here are over R, the real field. In any Hilbert space X , the action
of a functional E ∈ X ′ on x ∈ X is denoted by ⟨E, x⟩X . When the space is clear from context, we also use E(x) to denote
the same number. Let B′

: V → U ′ be the dual of B defined by ⟨B′v, u⟩U = ⟨Bu, v⟩V for all u ∈ U and v ∈ V . The reason
for using ′ instead of ∗ to denote the dual operator will become evident when a different, but related, notion of duality
is introduced in Section 2.3.2

The two reformulations are as follows.

Find u ∈ U and ε ∈ V satisfying
{
RV ε + Bu = ℓ,

B′ε = 0.
(2)

Find u ∈ U and λ ∈ V satisfying
{
RUu − B′λ = 0,
Bu = ℓ.

(3)

Here RV : V → V ′ is the Riesz operator acting on V , defined using the inner product (·, ·)V by (RVv)(ν) = (v, ν)V for all
v, ν ∈ V . The Riesz operator RU is defined similarly. It is immediate that if u solves (1), then with ε = 0 it solves (2),
revealing a relationship between (2) and (1). The relationship between (3) and (1) is also easy to guess: any solution
(u, λ) of (3) is such that the u component solves (1). We shall see below that, even though related, these formulations are
not fully equivalent to (1). The formulation (2) is the one on which the DPG method is based. The formulation (3), when
discretized, results in the new DPG* method, as we shall see.

Formulations (2) and (3) are structurally similar, differing mainly in the position where the load ℓ is placed. Due to
the structural similarity, both formulations can be viewed at once as instantiations of the following general saddle-point
problem

Find v ∈ V and w ∈ U satisfying
{
RVv + Bw = F ,
B

′v = G ,
(4)

on some Hilbert spaces U and V, some bounded linear operator B : U → V′, and some given functionals F ∈ V′ and G ∈ U′.
Indeed, with

V = V , U = U, B = B, F = ℓ, G = 0,

1 DPG* methods are distinct from the saddle point least squares methods [9] which have separately been contenders for being named ‘‘dual’’ to
DPG methods.
2 Therefore, the asterisk in the DPG* method is evocative of the connections to the LL∗ method [11].
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we obtain (2). If instead, we set

V = U, U = V , B = −B′, F = 0, G = −ℓ,

then we obtain (3). Admittedly, the alternative mixed form obtained by exchanging B and B′ in (4) is more natural for
studying the DPG* method and even aligns with the standard notations in mixed method theory [17]. Yet, we have chosen
to work with (4) to facilitate comparison with existing DPG literature where the form of (4) is more natural.

We proceed under the assumption that B is bounded below, i.e., there is a γ > 0 such that

∥Bµ∥V′ ≥ γ ∥µ∥U, ∀µ ∈ U. (5)

Note that the maximum of all such γ is simply ∥B−1
∥. Under this assumption, the mixed system (4) has a unique solution

for any F ∈ V′ and G ∈ U′ (see e.g. [17]). Obviously (5) can also be written out as an inf-sup condition. Here and throughout,
for any Banach space X , the right annihilator of a subset Y ⊂ X and the left annihilator of a Z ⊂ X ′ are defined by

Y⊥
= {E ∈ X ′

: ⟨E, y⟩X = 0 for all y ∈ Y } and ⊥Z = {x ∈ X : ⟨E, x⟩X = 0 for all E ∈ Z}, (6)

respectively. Recall that if Y ⊂ X is a closed subspace, Y = Y , then Y⊥ is isomorphic to (X/Y )′.
Now consider the mixed system (4) when G = 0 and the related problem of finding w ∈ U satisfying

Bw = F . (7)

The regularizing effect of the saddle-point formulation above is already evident: while (4) is always solvable under (5),
the related problem (7) is solvable provided F satisfies the compatibility condition F ∈ (NullB′)⊥. To reiterate the above
observation that (7) is not fully equivalent to (4), we may view (7) as an overdetermined system. Overdetermined systems
are solvable only if they are consistent, i.e., have compatible data. Irrespective of the data, what the mixed system (4)
solves can be seen by eliminating v (and recalling that G = 0), namely

B
′
R

−1
V Bw = B

′
R

−1
V F . (8)

Eq. (8) can be immediately identified with what is referred to as a ‘‘normal equation’’ in linear algebra. This is a regularized
version of (7). Indeed, whenever (7) has a solution, it must be unique due to (5), and that unique solution is recovered
by (8). However, (8) has a unique solution even when (7) does not.

Next, considering the case of F = 0, we may likewise argue that the mixed system (4) also helps us solve
underdetermined systems. Under the same assumption (5), consider

B
′v = G. (9)

Assumption (5) implies that B′ is surjective, so (9) is always solvable, but its solution need not be unique in general.
Thus, (9) may be viewed as an example of an underdetermined system. Similar to (8), the solution variable v can be
readily eliminated from (4) (now recalling that F = 0):

B
′
R

−1
V Bw = −G. (10)

This equation is in correspondence with a different normal equation (one of the second type [18]). Notice that the left-hand
side operator B′R

−1
V B : U → U′ is the same in both (8) and (10) and that the solution v in (10) can be recovered by the

relationship v = −R
−1
V Bw.

To reconsider how the mixed system (4) converts (9) into a uniquely solvable problem, we use orthogonal complements
in Hilbert spaces, which we distinguish from the annihilators in (6) by placing the symbol ⊥ as a subscript. Thus, while
(NullB′)⊥ is a subspace of V′, the notation (NullB′)⊥ indicates the subspace of V defined by

(NullB′)⊥ = {v ∈ V : (v, ν0)V = 0, ∀ ν0 ∈ NullB′
}.

One may then decompose any solution of (9) into V-orthogonal components:

v = v0 + v⊥, v0 ∈ NullB′, v⊥ ∈ (NullB′)⊥. (11)

Observe that

(NullB′)⊥ = RV(NullB′)⊥. (12)

Since F = 0, testing the first equation of (4) with v0, we find that what (4) selects as its unique solution v is in fact simply
v⊥.

Returning to the case of general F and G, we collect a few identities in the next result. First, note that one may also
decompose F into orthogonal components:

F = F 0
+ F⊥, F 0

∈ RV(NullB′), F⊥
∈ RV(NullB′)⊥ = (NullB′)⊥. (13)

Second, note that when (5) holds, |||µ|||U= ∥Bµ∥V′ generates an equivalent norm on U, ∥B−1
∥

−1
∥µ∥U ≤ |||µ|||U≤

∥B∥∥µ∥U, and we may define

|||G|||U′= sup
0̸=µ∈U

⟨G, µ⟩U

|||µ|||U
. (14)
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Proposition 2.1. Suppose F ∈ V′, G ∈ U′, v ∈ V and w ∈ U solve (4) and let v0 and v⊥ be the unique components of the
decomposition of v in (11). Similarly, let F 0 and F⊥ be the unique components of the decomposition of F in (13). Then the
following identities hold:

∥v0∥
2
V + ∥RVv⊥ + Bw∥

2
V′ = ∥F∥

2
V′ , (15)

∥v0∥
2
V + ∥Bw∥

2
V′ = ∥F − RVv⊥∥

2
V′ . (16)

Moreover, v0 = R
−1
V F 0 and

∥v0∥V = ∥F 0
∥V′ , (17)

∥Bw∥V′ = ∥F⊥
− RVv⊥∥V′ . (18)

If in addition, (5) holds, then for any F ∈ V′, G ∈ U′, there is a unique v ∈ V and w ∈ U satisfying (4) and the following
identities hold:

∥v⊥∥V = |||G|||U′ , (19)

∥v∥2
V + |||w|||

2
U= ∥F − RVv⊥∥

2
V′ + |||G|||

2
U′ . (20)

If in addition, either F ∈ (NullB′)⊥ or B is a bijection, then v0 = 0 and

∥v∥V = |||G|||U′ . (21)

Proof. For any ν0 ∈ NullB′, we have (R−1
V Bw, ν0)V = ⟨Bw, ν0⟩V = ⟨B′ν0, w⟩U = 0. Hence R

−1
V Bw is in (NullB′)⊥.

Therefore, when the first equation of (4) is rewritten as

v0 + (v⊥ + R
−1
V Bw) = R

−1
V F , (22)

an application of the Pythagorean theorem gives (15). Rewriting (22) as v0 + R
−1
V Bw = R

−1
V F − v⊥, and applying the

Pythagorean theorem again, we obtain (16). Rewriting (22) instead as

v0 − R
−1
V F 0

= R
−1
V F⊥

− (v⊥ + R
−1
V Bw),

we note that v0 = R
−1
V F 0 and R

−1
V F⊥

= v⊥ + R
−1
V Bw, by orthogonality. Eqs. (17) and (18) are now obvious.

Next, if (5) holds, then standard mixed theory [17] gives existence of a unique (v,w) ∈ V×U, and |||·|||U is an equivalent
norm on U. To prove (19), we begin by noting that the isometry induced by RV implies

∥v⊥∥V = sup
ν⊥∈(NullB′)⊥

(ν⊥, v⊥)V
∥ν⊥∥V

= sup
ν⊥∈(NullB′)⊥

⟨RVν⊥, v⊥⟩V

∥RVν⊥∥V′

= sup
E⊥∈RV(NullB′)⊥

⟨E⊥, v⊥⟩V

∥E⊥∥V′

.

Here and throughout, supremums over spaces are only taken over nonzero elements of the space. Again, from the identity
RangeB = (NullB′)⊥ and (12), we conclude that

∥v⊥∥V = sup
E⊥∈RangeB

⟨E⊥, v⊥⟩V

∥E⊥∥V′

= sup
µ∈U

⟨Bµ, v⊥⟩V

∥Bµ∥V′

= sup
µ∈U

⟨µ,B′v⊥⟩V

|||µ|||U
.

Thus, (19) follows after using the second equation in (4), namely G = B′(v0 + v⊥) = B′v⊥. Identity (20) now follows by
squaring both sides of (19) and adding it to (16).

Finally, when B is a bijection or F ∈ (NullB′)⊥, we conclude that F 0
= 0. Therefore, v0 = 0 and (21) follows

from (19). □

Identities like (20) have often been referred to by the name hypercircle identities [16] and their use in a posteriori error
estimation is now standard. We shall return to this in Section 4.

2.2. Forms and discretization

It is traditional to write mixed systems using a bilinear form defined by

b(µ, ν) = ⟨Bµ, ν⟩V (23)

for all µ ∈ U, ν ∈ V. In terms of b, the mixed problem (4) is to find v ∈ V and w ∈ U satisfying{
(v, ν)V + b(w, ν) = F (ν) , ∀ ν ∈ V,

b(µ, v) = G(µ) , ∀µ ∈ U.
(24)

Suppose b arises from a weak formulation of a PDE on a domain Ω ⊂ Rd, which is partitioned into a mesh Ωh of finitely
many open connected elements K with Lipschitz boundaries ∂K , such that Ω is the union of the closures of all mesh
elements K in Ωh. In this scenario, if there are Hilbert spaces V(K ) on each mesh element K such that

V =

∏
K∈Ωh

V(K ), (25)
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then the system (24), in the case G = 0, is called a DPG formulation. In the case F = 0, it is called a DPG* formulation.
Spaces of the form (25) are called broken spaces [7].

A discrete method based on (24) would require a pair of discrete finite-dimensional spaces Uh ⊂ U and Vh ⊂ V, not
necessarily of the same dimension. The discrete problem would then read as the problem of finding vh ∈ Vh and wh ∈ Uh
satisfying{

(vh, ν)V + b(wh, ν) = F (ν) , ∀ ν ∈ Vh,

b(µ, vh) = G(µ) , ∀µ ∈ Uh.
(26)

When V is a broken space of the form (25), Vh can be chosen to consist of functions with no continuity constraints across
mesh element interfaces. Then the case G = 0 delivers DPG methods and the case F = 0 delivers DPG* methods. In both
cases, we must typically find Vh with dim(Vh) > dim(Uh) with provable discrete stability.

A key feature of (26) is that the top left form, (v, ν)V, being an inner product, is always coercive. Hence the discrete
stability of (26) is guaranteed solely by a discrete inf-sup condition, which is often easy to obtain in practice since we
can increase dim(Vh) without violating the coercivity of the top left term. This inf-sup condition has been analytically
established for various DPG methods through the construction of local [5–7] or global [19] Fortin operators on generously
large test spaces. The same inf-sup condition also confirms the stability of the corresponding DPG* methods. An alternative
characterization of the methods above can be found in a Petrov–Galerkin form in [8, Section 4.1].

Upon the choice of bases {vi} and {wj} for the discrete spaces Vh and Uh, (26) can be identified with the following
system of matrix equations:[

G B
BT 0

][
v
w

]
=

[
f
g

]
. (27)

Here, B is a rectangular matrix with coefficients determined by the bilinear form, Bij = b(wj, vi), and, by conventional
notation, G is a Gram matrix governed by the chosen inner product, Gik = (vi, vk)V. Naturally, the vectors fi = F (vi),
gj = G(wj) are identified with the two loads in (26) and the vectors v and w correspond to the coefficients of the chosen
basis functions. In the broken space setting (25), the Gram matrix can be block-diagonal. In that case, inverting G is
computationally feasible and the Schur complement of (27) (cf. (8) and (10)) may be used to solve for the vector w in a
much smaller system, independent of v:

BTG−1Bw = BTG−1f − g . (28)

Notice that the DPG stiffness matrix, BTG−1B, is always symmetric and positive-definite and that after solving for w
via (28), v can always be recovered with only local cost, i.e., v = G−1(f−Bw). Construction of the stiffness matrix BTG−1B
with broken spaces is considered in detail in [20].

2.3. Ultraweak formulations

Many PDEs originate in the following strong form:

Lu = f , (29)

where L is a linear differential operator and f is a prescribed function. It is possible to give many general DPG and DPG*
formulations for such operator equations using the framework of [21, Appendix A] (which generalizes the Friedrichs
systems framework in [22–24]). Let d, k,m, l ≥ 1 be integers and let Ω ⊆ Rd be a bounded open set. We use multiindices
α = (α1, . . . αd) of length |α| = α1 + · · · + αd ≤ k. Suppose we are given functions aijα : Ω → R for each i = 1, . . . , l,
j = 1, . . . ,m, and each |α| ≤ k. Let L be the differential operator acting on functions u : Ω → Rm such that

[Lu]i =

m∑
j=1

∑
|α|≤k

∂α(aijαuj), i ∈ {1, . . . , l}.

Wherever appropriate, let L2 denote either the l- or m-fold Cartesian product of L2(Ω). Likewise, let D denote either the
l- or m-fold Cartesian product of D(Ω), where D(Ω) is the space of infinitely differentiable functions that are compactly
supported onΩ (and accordingly, D′ denotes distributional vector fields). Let L∗ be the formal adjoint differential operator
of L, i.e., it satisfies (Lφ,ψ)L2 = (φ,L∗ψ)L2 for all φ,ψ ∈ D. From now on, we will simply denote all such L2-inner products
on Ω as (·, ·)Ω = (·, ·)L2 . Likewise, all L2-inner products restricted to a measurable subset K ⊂ Ω will be denoted (·, ·)K .

The action of L∗ on v : Ω → Rl is given by

[L∗v]j =

l∑
i=1

∑
|α|≤k

(−1)|α|aijα ∂αvi, j ∈ {1, . . . ,m}. (30)

We assume that the coefficients aijα are such that both Lu and L∗v are well-defined distributions for all u, v ∈ L2, i.e.,

Lu and L∗v are in D′ for all u, v ∈ L2. (31a)
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(This holds e.g., if aijα are constant [21].)
We may now define Sobolev-like graph spaces by virtue of (31a). On any nonempty open subset K ⊆ Ω , define

the Hilbert spaces H(L, K ) = {u ∈ L2(K )m : Lu ∈ L2(K )l} and, likewise, H(L∗, K ) = {v ∈ L2(K )l : L∗v ∈ L2(K )m}.
(E.g., if we let L = grad, the canonical gradient operator, then L∗

= −div and H(L, K ) = H(grad, K ) = H1(K ) and
H(L∗, K ) = H(div, K ).) To simplify notation, we abbreviate H(L) = H(L,Ω) and H(L∗) = H(L∗,Ω). Also define linear
operatorsD : H(L) → H(L∗)′ andD ∗

: H(L∗) → H(L)′ such that

⟨D u, v⟩H(L∗) = (Lu, v)Ω − (u,L∗v)Ω , ⟨D
∗v, u⟩H(L) = (L∗v, u)Ω − (v,Lu)Ω ,

for all u ∈ H(L) and v ∈ H(L∗). Note thatD ∗
= −D

′, by these definitions. These graph spaces are equipped with natural
graph norms:

∥u∥2
H(L) = ∥Lu∥2

L2 + ∥u∥2
L2 , ∥v∥2

H(L∗) = ∥L∗v∥2
L2 + ∥v∥2

L2 .

With these norms, notice that bothD andD ∗ are bounded. Indeed, |⟨D u, v⟩H(L∗)| ≤ ∥Lu∥L2∥v∥L2 + ∥u∥L2∥L
∗v∥L2 ≤

∥u∥H(L)∥v∥H(L∗).
Finally, we may incorporate homogeneous boundary conditions. Recall the definition of the left annihilator in (6).

Define H0(L) ⊂ H(L) and H0(L∗) ⊂ H(L∗) to be two subspaces satisfying

H0(L) =
⊥
D

∗(H0(L∗)), H0(L∗) =
⊥
D (H0(L)). (31b)

Observe that (31b) does not uniquely characterize either H0(L) or H0(L∗). These definitions permit many different so-called
‘‘mixed’’ homogeneous boundary conditions.

We will consider two boundary value problems: Given f , g ∈ L2,

find u ∈ H0(L) satisfying Lu = f , (32a)

find v ∈ H0(L∗) satisfying L∗v = g. (32b)

To derive a broken ‘‘ultraweak formulation’’ for (32a) and (32b), we focus on the scenario where Ω is partitioned into a
mesh Ωh of finitely many open disjoint elements K such that Ω is the union of closures of all mesh elements K in Ωh. For
functions u and v, we denote by Lhu and L∗

hv the functions obtained by applying L and L∗ to u|K and v|K , respectively,
element by element, for all K ∈ Ωh. With this in mind, define the broken spaces

H(Lh) =

∏
K∈Ωh

H(L, K ), H(L∗

h) =

∏
K∈Ωh

H(L∗, K ),

which naturally conform to (25).
Clearly, H(Lh) and H(L∗

h) are inner product spaces with corresponding graph norms. The natural inner products on
these spaces, induced by these graph norms, are defined

(u, ũ)H(Lh) = (Lhu,Lhũ)Ω + (u, ũ)Ω , (v, ṽ)H(L∗
h)

= (L∗

hv,L
∗

hṽ)Ω + (v, ṽ)Ω , (33)

for all u, ũ ∈ H(Lh), v, ṽ ∈ H(L∗

h). Now define the corresponding bounded linear operatorsD h : H(Lh) → H(L∗

h)
′ and

D
∗

h : H(L∗

h) → H(Lh)′ by

⟨D hu, v⟩H(L∗
h)

= (Lhu, v)Ω − (u,L∗

hv)Ω , ⟨D
∗

hv, u⟩H(Lh) = (L∗

hv, u)Ω − (v,Lhu)Ω ,

for all u ∈ H(Lh), v ∈ H(L∗

h). From now on, when using the operatorsD h andD ∗

h , we will simply denote ⟨D h·, ·⟩h =

⟨D h·, ·⟩H(L∗
h)

or, likewise, ⟨D ∗

h·, ·⟩h = ⟨D
∗

h·, ·⟩H(Lh), since the meaning can easily be deduced from context. Finally, let

Q (Lh) = {p ∈ H(Lh)′ : there is a v ∈ H0(L∗) such that p =D
∗

hv},

Q (L∗

h) = {q ∈ H(L∗

h)
′
: there is a u ∈ H0(L) such that q =D hu}.

These are Hilbert spaces when normed by the so-called minimum energy extension (quotient) norm [7,25], i.e., ∥q∥Q (L∗
h)

=

inf{∥u∥H(L) : u ∈ H(L) satisfyingD hu = q}.
Multiplying (32a) by a function ν ∈ H(L∗

h) and applying the definition ofD h, we get (u,L∗

hν)Ω + ⟨D hu, ν⟩h = (f , ν)Ω
for all ν in H(L∗

h). SettingD hu to q, a new unknown in Q (L∗

h), we obtain the following ultraweak formulation with
F (ν) = (f , ν)Ω . Given any F ∈ H(L∗

h)
′, find u ∈ L2 and q ∈ Q (L∗

h) such that

(u,L∗

hν)Ω + ⟨q, ν⟩h = F (ν) ∀ ν ∈ H(L∗

h). (34a)

Similarly proceeding with (32b) and setting F (ν) = (g, ν)Ω , we obtain an ultraweak formulation of the dual problem:
Given any F ∈ H(Lh)′, find u ∈ L2 and p ∈ Q (Lh) such that

(v,Lhν)Ω + ⟨p, ν⟩h = F (ν) ∀ ν ∈ H(Lh). (34b)

The next result shows that (34a) is uniquely solvable whenever (32a) is, as well as similar connection between (34b)
and (32b).
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Theorem 2.2 (Wellposedness of Broken Forms). Suppose (32) holds. Then

(1) Whenever L : H0(L) → L2 is a bijection, problem (34a) is well-posed. Moreover, if F (ν) = (f , ν)Ω for some f ∈ L2, then
the unique solution u of (34a) is in H0(L), solves (32a), and satisfies q =D hu.

(2) Whenever L∗
: H0(L∗) → L2 is a bijection, problem (34b) is well-posed. Moreover, if F (ν) = (g, ν)Ω for some g ∈ L2,

then the unique solution v of (34b) is in H0(L∗), solves (32b), and satisfies p =D
∗

hu.

Proof. The first statement is exactly the statement of [21, Theorem A.5]. The second statement also follows from [21,
Theorem A.5] when L is replaced by L∗. □

Naturally, formulations (34a) and (34b) also have adjoints. For instance, the adjoint of the ultraweak formulation (34a)
is the following: Given any G ∈ (L2 × Q (L∗

h))
′, find v ∈ H(L∗

h) such that

(µ,L∗

hv)Ω + ⟨ρ, v⟩h = G(µ, ρ) ∀µ ∈ L2, ρ ∈ Q (L∗

h). (35a)

Similarly, the adjoint of (34b) is: Given any G ∈ (L2 × Q (Lh))′, find u ∈ H(Lh) such that

(µ,Lhu)Ω + ⟨ρ, u⟩h = G(µ, ρ) ∀µ ∈ L2, ρ ∈ Q (Lh). (35b)

Under similar conditions to Theorem 2.2, these variational formulations are also well-posed, as the following theorem
demonstrates.

Theorem 2.3 (Wellposedness of the Adjoint Problems). Suppose (32) holds. Then

(1) Whenever L : H0(L) → L2 is a bijection, problem (35a) is well-posed. Moreover, if G(µ, ρ) = (g, µ)Ω for some g ∈ L2,
then the unique solution v of (35a) is in H0(L∗) and solves (32b).

(2) Whenever L∗
: H0(L∗) → L2 is a bijection, problem (35b) is well-posed. Moreover, if G(µ, ρ) = (f , µ)Ω for some f ∈ L2,

then the unique solution u of (35b) is in H0(L) and solves (32a).

Proof. Both claims are closely related and follow similarly from Theorem 2.2. Therefore, we prove only the first statement.
Let the operator B : L2 × Q (L∗

h) → H(L∗

h)
′ be defined ⟨B(µ, ρ), ν⟩H(L∗

h)
= (µ,L∗

hν)Ω + ⟨ρ, ν⟩h, for all ν ∈ H(Lh) and
(µ, ρ) ∈ L2 × Q (L∗

h). Recall that F ∈ H(L∗

h)
′
= RangeB in (34a) was arbitrary. Therefore, as a consequence of the first

statement in Theorem 2.2, we conclude that B is both bounded below (cf. (5)) and surjective. That is, B is a bijection and,
by the Closed Range Theorem, (NullB′)⊥ = {0}. Hence, we conclude that (35a) is well-posed.

Next, suppose G((µ, ρ)) = (g, µ)Ω . Then (35a) yields

(µ,L∗

hv)Ω = (g, µ)Ω , (36)

⟨ρ, v⟩h = 0, (37)

for all µ ∈ L2 and ρ ∈ Q (L∗

h). Eq. (36) yields L∗

hv = g since H(L∗

h) is continuously embedded in L2. It remains to show
that v is in H0(L∗). Note that for all φ ∈ D, by the distributional definition of L and the definition ofD h,

⟨L∗v, φ⟩D = (Lφ, v)Ω = (L∗

hv, φ)Ω + ⟨D hφ, v⟩h.

Since D is contained in H0(L),D hφ is in Q (L∗

h) and the last term vanishes by virtue of (37). Moreover, since D is densely
contained in L2, this shows that L∗v = L∗

hv = g . Thus v ∈ H(L∗). Using (37) again, observe (cf. [21, Lemma A.3]) that

0 = ⟨ρ, v⟩h = ⟨D hµ, v⟩h = ⟨D µ, v⟩H(L∗) ,

for all ρ =D hµ ∈ Q (L∗

h), where µ ∈ H0(L). Therefore, v ∈
⊥
D (H0(L)). Finally, v is in H0(L∗) simply by (31b). □

Evidently, this result gives a class of examples where DPG* methods can be formulated. Letting U = L2 × Q (Lh) and
V = H0(Lh), define the bilinear form b : U × V → R as follows

b((µ, ρ), ν) = (µ,Lhν)Ω + ⟨ρ, ν⟩h ∀ (µ, ρ) ∈ U, ν ∈ V. (38)

We may now consider the DPG* formulations of (32a). Treatment of the dual problem (32b) is similar.

Theorem 2.4 (Ultraweak DPG* Formulation of (32a)). Let (·, ·)V be any inner product on H(Lh) equivalent to (·, ·)H(Lh).
Suppose (32) holds, L∗

: H0(L∗) → L2 is a bijection, and b is as in (38). Then, given a G ∈ (L2 ×Q (Lh))′, the problem of finding
a function u ∈ H(Lh) satisfying{

(u, ν)V − b((λ, σ ), ν) = 0 ∀ ν ∈ H(Lh),

b((µ, ρ), u) = G((µ, ρ)) ∀ (µ, ρ) ∈ L2 × Q (Lh),
(39)

is well-posed. Moreover, if G((µ, ρ)) = (f , µ)Ω for some f ∈ L2, then the unique solution u is in H0(L) and satisfies Lu = f ,
i.e., u solves (32a).
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Proof. Define the operator B : H(Lh) → (L2 × Q (Lh))′, by ⟨Bν, (µ, ρ)⟩L2×Q (Lh) = b((µ, ρ), ν) for all (µ, ρ) ∈ L2 × Q (Lh)
and ν ∈ H(Lh). As in the proof of Theorem 2.3, the operator B = B′ is a bijection. Hence, (39) is a problem of form (4)
(also (3)) with B satisfying (5) and we conclude that (39) has a unique solution (see, e.g., Proposition 2.1). The remaining
statements immediately follow from Theorem 2.3. □

Remark 2.5. Note that the notation in Theorem 2.4 expresses the DPG* solution u ∈ V and (λ, σ ) ∈ U in the form of (3).
That is, the first solution component is denoted by the symbol u. From now on, in order to more closely follow the abstract
notation used in (4), we will only use the symbol v for the V-solution in all DPG* problems.

Remark 2.6. A very general broken space theory applicable of both DPG and DPG* methods has been established in the
literature. This theory encompasses more traditional weak formulations and has been applied to a wide variety different
boundary value problems [7,26–29]. For brevity, we will not expand on the intricate details here, but simply act to remind
the reader that ultraweak variational formulations are not a prerequisite for any DPG-type method coming from (26).

Example 2.7 (Poisson Equation). In this example, which resurfaces throughout the document, v⃗ = (p⃗, v) will denote the
DPG* solution variable. Similarly, λ⃗ = (ζ⃗ , λ, ζ̂n, λ̂) will come to denote the associated Lagrange multiplier (see Section 3.2).

On a bounded open set Ω ⊆ Rd with connected Lipschitz boundary, set m = d + 1 and

L(p⃗, v) = (p⃗ − grad v,−divp⃗) , (40)

where p⃗ : Ω → Rd represents the flux variable and v : Ω → R represents the solution variable. Note that the equation
L(p⃗, v) = (0⃗, f ), after elimination of p⃗, results in the well-known Poisson equation −∆v = f .

We want to write out the DPG* formulation studied in Theorem 2.4 for this L. Begin by observing that L∗ given by (30)
can be written as

L∗(σ⃗ , µ) = (σ⃗ + gradµ, divσ⃗ ). (41)

Obviously (31a) is satisfied. In this case, by the triangle inequality, we immediately see that both H(L) and H(L∗) coincide
with H(div,Ω) × H1(Ω). By integration by parts,

⟨D
∗(σ⃗ , µ), (p⃗, v)⟩h = ⟨σ⃗ · n⃗, v⟩H1/2(∂Ω) + ⟨p⃗ · n⃗, µ⟩H1/2(∂Ω), (42)

where n⃗ denotes the unit outward normal on ∂Ω . Put

H0(L∗) = H(div,Ω) × H1
0 (Ω). (43)

One may verify that this choice corresponds to the Dirichlet problem, v = 0 on ∂Ω , and H0(L) = H0(L∗).
From (42), it is immediate that (31b) holds. Along the lines of (42), we also have

⟨D
∗

h(σ⃗ , µ), (p⃗, v)⟩h =

∑
K∈Ωh

[
⟨σ⃗ · n⃗, v⟩H1/2(∂K ) + ⟨p⃗ · n⃗, µ⟩H1/2(∂K )

]
.

The range ofD ∗

h|H0(L∗) is Q (Lh). In this example, this can be characterized using standard trace operators. The domain-
dependent trace operators trKu = u|∂K and trKn σ⃗ = σ⃗ |∂K ·n⃗ for smooth functions are well-known to be continuously
extendable to bounded linear maps trK : H1(K ) → H1/2 (∂K ) and trKn : H(div, K ) → H−1/2 (∂K ). Let tr =

∏
K∈Ωh

trK and
trn =

∏
K∈Ωh

trKn . Then define

H−1/2 (∂Ωh) = trn(H(div,Ω)), H
1/2
0 (∂Ωh) = tr(H1

0 (Ω)). (44)

Clearly, Q (Lh) = H−1/2 (∂Ωh) × H
1/2
0 (∂Ωh).

Applying the abstract setting to these definitions, the DPG* bilinear form in (38), becomes

b((σ⃗ , µ, σ̂n, µ̂), (τ⃗ , ν)) =

∑
K∈Ωh

[
(σ⃗ , τ⃗ − grad ν)K − (µ, divτ⃗ )K

]
+

∑
K∈Ωh

[
⟨τ⃗ · n⃗, µ̂⟩H1/2(∂K ) + ⟨σ̂n, ν⟩H1/2(∂K )

]
. (45)

Here, (·, ·)K denotes the inner product in L2(K ) or its Cartesian products, σ⃗ ∈ L2(Ω)d, µ ∈ L2(Ω), (σ̂n, µ̂) is in the space
Q (Lh) defined above, and the solution variable (σ⃗ , µ) is in the broken space H(Lh) = H(div,Ωh) × H1(Ωh), where

H(div,Ωh) =

∏
K∈Ωh

H(div, K ), H1(Ωh) =

∏
K∈Ωh

H1(K ).

Finally, the bijectivity of L : H0(L) → L2 can be proved by standard techniques (see e.g. [30]). Hence Theorem 2.4 yields
that this DPG* formulation is well posed.

We shall revisit this example later. In order to shorten the notation for later discussions, we shall denote the expression

(gradh µ, σ⃗ )Ω + (µ, divhσ⃗ )Ω
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by ⟨µ, σ⃗ · n⃗⟩h or ⟨σ⃗ · n⃗, µ⟩h without explicitly indicating the application of the trace maps trn and tr. Accordingly, the
bilinear form in (45) may be abbreviated as b((σ⃗ , µ, σ̂n, µ̂), (τ⃗ , ν)) = (σ⃗ , τ⃗ − grad ν)Ω − (µ, divτ⃗ )Ω + ⟨τ⃗ · n⃗, µ̂⟩h +

⟨σ̂n, ν⟩h. □

2.4. Related methods

Let V = H(L∗

h). For any F ∈ H(L∗

h)
′, the ultraweak DPG formulation defined by (39) can be restated as the following

system of variational equations:⎧⎪⎨⎪⎩
(ε, ν)V + (u,L∗

hν)Ω + ⟨p, ν⟩h = F (ν) , ∀ ν ∈ H(L∗

h),

(µ,L∗

hε)Ω = 0 , ∀µ ∈ L2,
⟨ρ, ε⟩h = 0 , ∀ ρ ∈ Q (L∗

h).
(46a)

Likewise, letting V = H(Lh), an ultraweak DPG formulation corresponding to (39) may be defined for any G = GΩ × Gh ∈

(L2 × Q (Lh))′:⎧⎪⎨⎪⎩
(v, ν)V − (λ,Lhν)Ω − ⟨σ , ν⟩h = 0 , ∀ ν ∈ H(Lh),

(µ,Lhv)Ω = GΩ (µ) , ∀µ ∈ L2,
⟨ρ, v⟩h = Gh(ρ) , ∀ ρ ∈ Q (Lh).

(46b)

Both of the formulations defined above relate to the primal problem (32a) with u = v. Clearly, the role of Lh and L∗

h can
be interchanged if a solution of the dual problem (32b) is of interest.

The link between DPG and least-squares methods is well established in the literature (see e.g. [20]). DPG* methods,
as it turns out, can be readily identified with the category of so-called LL∗ methods [11]. In this subsection, we briefly
illustrate this and a couple of other notable relationships in the context of the mixed problems introduced in Section 2.1.

2.4.1. Least-squares methods
Let V = L2 and U = H0(L). It is well-known that least-squares finite element methods [31] follow from the following

saddle-point formulation (cf. (2) and (46a)):{
(ε, ν)Ω + (Lu, ν)Ω = F (ν) , ∀ ν ∈ L2 ,
(Lµ, ε)Ω = 0 , ∀µ ∈ H0(L) .

(47)

This may be identified with a mixed problem akin to (2) using the strong formulation of (32a), rather than the ultraweak
formulation, as in (46a). Indeed, let RL2 be the L2 Riesz operator appearing in each term in (47) and recall identity (8),
where (Bµ)(·) = (Lµ, ·)Ω . Then observe that B′R

−1
V B = (RL2L)′R

−1
L2

(RL2L) = L′RL2L and B′R
−1
V F = L′F . That is,

⟨B
′
R

−1
V Bu, µ⟩U = ⟨B

′
R

−1
V F , µ⟩U ⇐⇒ (Lu,Lµ)Ω = F (Lµ) .

In the case F (·) = (f , ·)Ω , observe that F (Lν) = (f ,Lν)Ω . Therefore, the variational equation above can be readily identified
with the first-order optimality condition for the functional J : u ↦→ ∥Lu − f ∥2

L2
, ∂uJ = 0.

2.4.2. LL∗ methods
Let V = L2 and U = H0(L∗). Contrary to (47), so-called LL∗ methods [11] relate to the following system (cf. (3) and

(46b)):{
(v, ν)Ω − (L∗λ, ν)Ω = 0 , ∀ ν ∈ L2 ,
(L∗µ, v)Ω = G(µ) , ∀µ ∈ H0(L∗) .

Likewise, consider (10), where (Bµ)(·) = (L∗µ, ·)Ω and G(·) = (f , ·)Ω . In this case, we see that LL∗ formulations may
again be identified with (32a), in this case using a saddle-point expression akin to (3). Indeed, observe that

⟨B
′
R

−1
V Bλ,µ⟩U = ⟨G, µ⟩U ⇐⇒ (L∗λ,L∗µ)Ω = (f , µ)Ω .

The variational equation above indicates, in a weak sense, that LL∗λ = f . Recalling that the solution is determined by
the transformation v = R

−1
V Bλ = L∗λ, we have Lv = f weakly, as well.

2.4.3. Weakly conforming least-squares methods
A weakly conforming least squares method [10] for the primal problem (32a) seeks a minimizer of the least squares

functional

w ↦→ ∥Lw − f ∥2
L2 ,

under the conformity constraint

⟨w, ρ⟩h = 0 , ∀ ρ ∈ Q (Lh) .
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Here, of course, the operator L is understood element-wise so we may saliently replace it by Lh. This leads to the following
saddle-point problem for the two solution components w and σ :{

(Lhw,Lhν)Ω + ⟨σ , ν⟩h = (f ,Lhν)Ω , ∀ ν ∈ H(Lh) ,
⟨w, ρ⟩h = 0 , ∀ ρ ∈ Q (Lh) .

(48)

If we use an ultraweak DPG* formulation (46b) with its corresponding graph inner product (33), scaled by an arbitrary
constant α > 0, we arrive at⎧⎪⎨⎪⎩

(Lhv,Lhν)Ω + α(v, ν)Ω − (λ,Lhν)Ω − ⟨σ , ν⟩h = 0 , ∀ ν ∈ H(Lh) ,

(µ,Lhv)Ω = (f , µ)Ω , ∀µ ∈ L2 ,
⟨v, ρ⟩h = 0 , ∀ ρ ∈ Q (Lh) .

(49)

From the second equation in (49), observe that f = Lhv. Therefore, the first equation can be rewritten as

(f − λ,Lhν)Ω + α(v, ν)Ω = ⟨σ , ν⟩h , ∀ ν ∈ H(Lh) .

Testing only with ν ∈ H(L), so that the term ⟨σ , ν⟩h vanishes, it can now be seen that λ → f as α → 0. Consequently,
this particular DPG* formulation can be viewed as a regularization of the weakly conforming least-squares formulation
(48).

2.5. Solving the primal and dual problems simultaneously

In (4), we may hypothetically consider any F ∈ V′ and G ∈ U′ we wish:{
RVv + Bw = F ,
B

′v = G .
(50)

Let B be an isomorphism and define F = RV(B′)−1G+ ℓ, for some fixed ℓ ∈ (NullB′)⊥ = V′.3 Noting that v = (B′)−1G, by
the second equation in (50), it is readily seen that Bw = ℓ. Therefore, with this choice of loads, w = u solves the primal
problem (1) and v solves the dual problem (9), simultaneously.

Introducing the load F , as proposed above, involves the inversion the linear operator B′. In practice, this is usually
not feasible and, therefore, precludes the construction of any such load in most circumstances. Nevertheless, consider the
following system of equations:{

(L∗v,L∗ν)Ω + (w,L∗ν)Ω = (g,L∗ν)Ω + (f , ν)Ω , ∀ ν ∈ H(L∗) ,

(L∗v, µ)Ω = (g, µ)Ω , ∀µ ∈ L2 .
(51)

This corresponds to a system like (50) with V = H(L∗) and U = L2. In (51), v clearly satisfies (L∗v, µ)Ω = (g, µ)Ω . That
is, v solves the dual problem (32b), L∗v = g , in a strong sense. Substituting µ = L∗ν into (51) and canceling terms in the
first equation, we immediately find that (w,L∗ν)Ω = (f , ν)Ω . That is, w = u solves the primal problem (32a), Lu = f , in
the ultraweak sense.

To avoid solving the mixed problem for both v and w at the same time, upon discretization, broken test spaces can
be used. In this setting, we must consider the following related system with solution (w, σ ) ∈ U = L2 × Q (L∗

h) and
v ∈ V = H(L∗

h):⎧⎪⎨⎪⎩
(L∗

hv,L
∗

hν)Ω + α(v, ν)Ω + (w,L∗

hν)Ω + ⟨σ , ν⟩h = (g,L∗

hν)Ω + (f , ν)Ω , ∀ ν ∈ H(L∗

h),

(L∗

hv, µ)Ω = (g, µ)Ω , ∀µ ∈ L2,
⟨v, ρ⟩h = 0, ∀ ρ ∈ Q (L∗

h).
(52)

Here the parameter α > 0 has been added only to ensure that the (1, 1)-block of the discrete system is locally invertible.
Due to the constraint ⟨v, ρ⟩h = 0, it can be shown that (52) is well-posed for any α ≥ 0.

The consequent manipulations are inspired by [14, Lemma 7]. First, notice that the last two equations in (52) uniquely
determine v. Therefore, after testing the middle equation with µ = L∗

hν, observe that the first equation can be rewritten

(w,L∗

hν)Ω + ⟨σ , ν⟩h = (f , ν)Ω − α(v, ν) .

By linearity, (w, σ )Ω = (u, q)Ω+α(e, r), where (u, q) ∈ U solves the ultraweak primal problem (u,L∗

hν)Ω+⟨q, ν⟩h = (f , ν)Ω
(cf. (32a)) and (e, r) = (e(v), r(v)) is a pollution term defined by the equation (e,L∗

hν)Ω +⟨r, ν⟩h = −(v, ν). Clearly, w → u
as α → 0+.

3 In the case of an injective but not surjective B, consider F = B(B′R
−1
V B)−1G + ℓ ∈ (NullB′)⊥ ⊊ V′ .
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3. A priori error analysis

3.1. General results

Having explained the connections between the DPG* method and the mixed formulation (4), it should not be a surprise
that its error analysis reduces to standard mixed theory. To state the result, let v ∈ V and λ ∈ U satisfy{

(v, ν)V − b(λ, ν) = 0 , ν ∈ V,

b(µ, v) = G(µ) , µ ∈ U.
(53)

The DPG* approximation (vh, λh) ∈ Vh × Uh satisfies{
(vh, ν)V − b(λh, ν) = 0 , ν ∈ Vh,

b(µ, vh) = G(µ) , µ ∈ Uh.
(54)

We assume that b(·, ·) : V × U → R is generated by a bounded linear operator B (as in (23)) that satisfies (5). The only
further assumption we need for error analysis is the existence of a Fortin operator. Namely, we assume that there is a
continuous linear operator Πh : V → Vh such that

b(µ, ν −Πhν) = 0, µ ∈ Uh, ν ∈ V. (55)

Under these assumptions, the standard theory of mixed methods [17] yields the following a priori estimate.

Theorem 3.1. Suppose (5) and (55) hold. Then there is a constant C such that the complete DPG* solution (v, λ) ∈ V × U

satisfies the error estimate

∥v − vh∥V + ∥λ− λh∥U ≤ C
[

inf
ν∈Vh

∥v − ν∥V + inf
µ∈Uh

∥λ− µ∥U

]
.

At times, it is possible to get an improvement using the Aubin–Nitsche duality argument. Suppose F is a functional
in (NullB′)⊥ and we are interested in bounding F (v − vh), a functional of the error v − vh. Consider ε ∈ V and u ∈ U

satisfying

(ε, ν)V + b(u, ν) = F (ν), (56a)

b(µ, ε) = 0, (56b)

for all ν ∈ V, µ ∈ U. To conduct the duality argument, we suppose that there is a positive c0(h) that goes to 0 as h → 0
satisfying

inf
µ∈Uh

∥u − µ∥U ≤ c0(h) ∥F∥V′ . (57)

This usually holds when the solution of (56) has sufficient regularity.

Theorem 3.2. Suppose (57) holds in addition to the assumptions of Theorem 3.1. Then there exists a positive function c0(h),
which goes to 0 as h → 0, such that the error in the DPG* solution component vh satisfies

F (v − vh) ≤ c0(h) ∥B∥ ∥F∥V′

[
inf
ν∈Vh

∥v − ν∥2
V + inf

µ∈Uh
∥λ− µ∥

2
U

]1/2

.

Proof. By Proposition 2.1, ε = 0 since F ∈ (NullB′)⊥. Put ν = v − vh in (56a). Then for any µ ∈ Uh, we have

F (v − vh) = (ε, v − vh)V + b(u, v − vh) by (56a),
= b(u, v − vh) since ε = 0,
= b(u − µ, v − vh) by (53) and (54),
≤ c0(h)∥B∥∥F∥V′∥v − vh∥V by (57).

The proof is completed by applying Theorem 3.1. □

It is interesting to note that the duality argument for the DPG* method uses a DPG formulation: the system (56) is
clearly a DPG formulation. Vice versa, the duality argument for DPG methods uses DPG* formulations, as can be seen
from the duality arguments in [12–14]. Even though these references did not use the name ‘‘DPG*,’’ one can see DPG*
formulations at work within their proofs.

At this point, an essential difficulty in DPG* methods (that was not present in DPG methods) becomes clear. Consider
using a DPG* form b(·, ·) given by Theorem 2.4 for solving the primal problem Lv = f . Then the error in vh computed
by the DPG* method not only depends on the regularity of the solution v, but also on the regularity of an extraneous
Lagrange multiplier λ. This is evident from the best approximation error bounds appearing in Theorems 3.1 and 3.2. The
following example will clarify this observation further.
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3.2. Application to the Poisson example

Given f ∈ L2(Ω), consider approximating the Dirichlet solution v

−∆v = f in Ω, v = 0 on ∂Ω, (58)

by the DPG* method. We follow the setting of Example 2.7. Accordingly, we set

U = L2(Ω)d × L2(Ω) × H−1/2 (∂Ωh) × H
1/2
0 (∂Ωh), V = H(div,Ωh) × H1(Ωh),

where H−1/2 (∂Ωh) and H
1/2
0 (∂Ωh) are defined in (44). The DPG* formulation (53) of (58) characterizes two variables,

v⃗ = (p⃗, v) ∈ V, λ⃗ = (ζ⃗ , λ, ζ̂n, λ̂) ∈ U,

satisfying

((p⃗, v), (τ⃗ , ν))V − b((ζ⃗ , λ, ζ̂n, λ̂), (τ⃗ , ν)) = 0, (59a)

b((σ⃗ , µ, σ̂n, µ̂), (p⃗, v)) = (f , µ)Ω , (59b)

for all ν⃗ = (τ⃗ , ν) in V and all µ⃗ = (σ⃗ , µ, σ̂n, µ̂) in U. Here, b(·, ·) as given by (45) and, as before, (·, ·)Ω denotes the inner
product in L2(Ω) (or its Cartesian products).

By Theorem 2.4, B is a bijection, so obviously (5) holds. Let Ωh be a shape regular mesh of simplices and
let Pp(K ) denote the space of polynomials of degree at most p on the simplex K . Define Pp(∂K ) = {µ : µ|E∈

Pp(E) for all codimension-one sub-simplices E of K } and set

Pp(Ωh) =

∏
K∈Ωh

Pp(K ), Pp(∂Ωh) =

∏
K∈Ωh

Pp(∂K ),

P̃p(∂Ωh) = Pp(∂Ωh) ∩ tr(H1
0 (Ω)), P̂p(∂Ωh) = Pp(∂Ωh) ∩ trn(H(div,Ω)). (60)

Clearly P̃p(∂Ωh) is a subspace of H
1/2
0 (∂Ωh) which consists of continuous single-valued functions on mesh interfaces. It is

also obvious that the space P̂p(∂Ωh) is a subspace of H−1/2 (∂Ωh). Furthermore, it may be shown that every σ̂n ∈ P̂p(∂Ωh)
has a corresponding σ̂ in

∏
K∈Ωh

x⃗Pp(K ) + Pp(K )d such that σ̂n = σ̂ · n. In particular, the value of σ̂n|∂K+ has the opposite
sign of the value of σ̂n|∂K− at every point of a mesh interface E = ∂K+

∩∂K− (so σ̂n is not single-valued on E). To remember
this orientation dependence, we often write a σ̂n in P̂(∂Ωh) as σ̂ · n⃗. A Fortin operator satisfying (55) for the case

Uh = {(σ⃗ , µ, σ̂n, µ̂) ∈ U : σ⃗ ∈ Pp(Ωh)d, µ ∈ Pp(Ωh), σ̂n ∈ P̂p(∂Ωh), µ̂ ∈ P̃p+1(∂Ωh)}

Vh = {(τ⃗ , ν) ∈ V : τ⃗ ∈ Pp+d(Ωh)d, ν ∈ Pp+d(Ωh)}.

was constructed in [5].
To understand the practical convergence rates, we must understand the regularity of λ⃗. One way to do this is to write

down the boundary value problem that λ⃗ satisfies, as done in [12,13]. An alternate technique can be seen in [14], which
directly manipulates the variational equation (59a) using the information in (59b). We follow the latter approach in the
next proof.

Proposition 3.3. The solution components ζ⃗ , λ, ζ̂n, λ̂ of the system (59) can be characterized using the remaining solution
components, p⃗ and v, and the function f as

ζ⃗ = p⃗ + r⃗, ζ̂n = 2p⃗ · n⃗ + r⃗ · n⃗,

λ = f + e, λ̂ = e,
(61)

where (r⃗, e) is in the space H0(L∗) defined in (43) and satisfies the Dirichlet problem L∗(r⃗, e) = (0⃗, v + 2f ) where L∗ is as
in (41). Specifically, e ∈ H1

0 (Ω) satisfies −∆e = v + 2f and r⃗ = − grad e.

Proof. By Theorem 2.4, we know that (59b) implies that p⃗, v satisfies L(p⃗, v) = (0⃗, f ), i.e.,

p⃗ − grad v = 0⃗, −divp⃗ = f . (62)

Next, we manipulate the first term of (59a) as follows:

((p⃗, v), (τ⃗ , ν))V = (p⃗, τ⃗ )Ω + (divp⃗, divτ⃗ )Ω + (v, ν)Ω + (grad v, grad ν)Ω
= (p⃗, τ⃗ − grad ν)Ω + (divp⃗, divτ⃗ )Ω + (v, ν)Ω + 2(grad v, grad ν)Ω

= (p⃗, τ⃗ − grad ν)Ω + (f ,−divτ⃗ )Ω + (v, ν)Ω + 2
∑
K∈Ωh

[
⟨n⃗ · p, ν⟩H1/2(∂K ) − (divp, ν)K

]
= b((p⃗, f , 2p⃗ · n⃗, 0), (τ⃗ , ν)) + (v + 2f , ν)Ω ,



3104 L. Demkowicz, J. Gopalakrishnan and B. Keith / Computers and Mathematics with Applications 79 (2020) 3092–3116

where we have used (62) twice. Now, let r⃗ ∈ L2(Ω)d, e ∈ L2(Ω) and (r̂n, ê) ∈ Q (Lh) satisfy

b((r⃗, e, r̂n, ê), (τ⃗ , ν)) = (v + 2f , ν)Ω

for all (τ⃗ , ν) ∈ H(Lh) = V. This is a variational equation of the form (34a). Hence, by the first item of Theorem 2.2, r⃗ and
e are unique. Moreover, (r⃗, e) ∈ H0(L∗) satisfies L∗(r⃗, e) = (0, v+ 2f ), and r⃗ · n⃗|∂K= r̂n|∂K , e|∂K= ê|∂K on all mesh element
boundaries. Thus,

((p⃗, v), (τ⃗ , ν))V = b((p⃗ + r⃗, f + e, (2p⃗ + r⃗) · n⃗, e), (τ⃗ , ν)).

Comparing this with (59a), the result follows. □

We may now apply Theorem 3.1 along with standard Bramble–Hilbert arguments (see [5, Corollary 3.6] for details) to
obtain convergence rates dictated by the following corollary to Theorem 3.1.

Corollary 3.4. Let h = maxK∈Ωh diam(K ), d = 2, 3, and let the assumptions of Theorem 3.1 and Proposition 3.3 hold. Let
v⃗h = (p⃗h, vh) ∈ Vh and λ⃗h = (ζ⃗h, λh, ζ̂n,h, λ̂h) ∈ Uh be the DPG* solutions to (54), with G(µ⃗) = (f , µ). Let e ∈ H1

0 (Ω) satisfy
−∆e = v + 2f . Then

∥v⃗ − v⃗h∥V + ∥λ⃗− λ⃗h∥U ≤ Chs(
∥v∥Hs+2(Ω) + ∥e∥Hs+2(Ω)

)
, (63)

for all 1/2 < s ≤ p + 1.

Proof. Note that the left-hand side of the inequalities in Theorem 3.1 and Corollary 3.4 coincide. Therefore, our proof
proceeds by showing that infν⃗∈Vh ∥v⃗ − ν⃗∥2

V + infµ⃗∈Uh ∥λ⃗− µ⃗∥U is bounded from above by the right-hand side of (63).
Let 1/2 < s ≤ p + 1 and notice that ∥v⃗ − ν⃗∥2

V = ∥p⃗ − τ⃗∥2
H(div,Ωh)

+ ∥v − ν∥2
H1(Ωh)

. Therefore, the following
inequality, infν⃗∈Vh ∥v⃗ − ν⃗∥2

V ≤ Chs(∥p⃗∥Hs+1(Ω) + ∥v∥Hs+1(Ω)), is immediate upon substituting ν⃗ =
∏

K∈Ωh
(ΠK

divp⃗,Π
K
gradv),

where ΠK
div : H(div, K )∩Hs(K ) → x⃗Pp(K )+Pp(K )d and ΠK

grad : H1+s(K ) → Pp+1(K ) are the local Raviart–Thomas and nodal
interpolation operators, for each element K ∈ Ωh. Since p⃗ = grad v, we see that infν⃗∈Vh ∥v⃗ − ν⃗∥2

V ≤ Chs
∥v∥Hs+2(Ω).

To handle the term infµ⃗∈Uh ∥λ⃗−µ⃗∥U, we remark that it is well known (cf. [32]) that there also exist global interpolants
Πgradv ∈ H1

0 (Ω), Πdivp⃗ ∈ H(div,Ω), and Πλ ∈ L2(Ω) such that Πgradv|K∈ Pp+1(K ), Πdivp⃗|K∈ x⃗Pp(K ) + Pp(K )d, and
Πλ|K∈ Pp(K ), for all K ∈ Ω . Moreover, there exist constants C , depending on the polynomial degree p and the shape
of the domain Ω , such that

∥v −Πgradv∥H1(Ω) ≤ Chr
|v|Hs+1(Ω), (1/2 < r ≤ p + 1), (64a)

∥p⃗ −Πdivp⃗∥H(div,Ω) ≤ Chr
|p⃗|Hs+1(Ω), (0 < r ≤ p + 1), (64b)

∥λ−Πλ∥L2(Ω) ≤ Chr
|λ|Hs(Ω), (0 < r ≤ p + 1). (64c)

Notice that ∥λ⃗−µ⃗∥
2
U = ∥ζ⃗−σ⃗∥

2
L2(Ω)

+∥λ−µ∥
2
L2(Ω)

+∥ζ̂n−σ̂n∥H
−1/2 (∂Ωh)

+∥λ̂−µ̂∥H1/2 (∂Ωh)
. Consider infσ⃗∈L2(Ω)d ∥ζ⃗−σ⃗∥L2(Ω) ≤

Chs
|ζ⃗ |Hs(Ω) and infµ∈L2(Ω) ∥λ − µ∥L2(Ω) ≤ hs

|λ|Hs(Ω), both by (64c). Now, by (61) in Proposition 3.3, |ζ⃗ |Hs(Ω) ≤ |p⃗|Hs(Ω) +

|r⃗|Hs(Ω). Similarly, by invoking the identity f = −∆v, we have |λ|Hs(Ω) ≤ 2|f |Hs(Ω) + |e|Hs(Ω) ≤ 2|v|Hs+2(Ω) + |e|Hs(Ω).
Next, recall that ∥trnσ⃗∥H

−1/2 (∂Ωh)
≤ C∥σ⃗∥H(div,Ωh), for any σ⃗ ∈ H(div,Ωh), by continuity of the normal trace operator

trn : H(div,Ωh) → H−1/2 (∂Ωh). Therefore, invoking (64b) and (61), we see that inf
σ̂n∈H

−1/2 (∂Ωh)
∥ζ̂n − σ̂n∥H

−1/2 (∂Ωh)
≤

Chs(2|p⃗|H1+s(Ω) + |r⃗|H1+s(Ω)). Likewise, using the trace theorem, (64a), and (61), we find inf
µ̂∈H1/2 (∂Ωh)

∥λ̂ − µ̂∥H1/2 (∂Ωh)
≤

Chs
|e|H1+s(Ω). Recalling that p⃗ = grad v and r⃗ = − grad e completes the proof. □

The conclusion from Corollary 3.4 is that even if the solution v has high regularity throughout the entire domain and
up to the boundary, the convergence rate of the DPG* method is still controlled by a pollution variable e, which may
happen to be less regular than v. Indeed, by elliptic regularity [33], e, which satisfies −∆e = v + 2f , will be at least as
regular as v in the interior of the domain, but may not be as regular up to the boundary.

To illustrate how to get higher order convergence rates in weaker norms using duality, we want to apply Theorem 3.2.
To this end, we require sufficient regularity in the solution of the dual problem. Consider the case of full regularity, where,
for any g ∈ L2(Ω), the solution u ∈ H1

0 (Ω) of the Dirichlet problem −∆u = g satisfies

∥u∥H2(Ω) ≤ C∥g∥L2(Ω). (65)

The inequality above is well known to hold on convex polygonal domains. In this case, we apply Theorem 3.2 with F ∈ V′

defined

F ((τ⃗ , ν)) = (v − vh, ν)Ω . (66)

Note that F only sees the error in the first solution component of v⃗h = (p⃗h, vh) and that

∥F∥V′ ≤ ∥v − vh∥L2(Ω). (67)
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We now need to verify (57), so let us consider the present analog of (56), with the functional F in (66):{
(ε⃗, ν⃗)V + b(u⃗, ν⃗) = F (ν⃗), ∀ ν⃗ ∈ V,

b(µ⃗, ε⃗) = 0, ∀ µ⃗ ∈ U.
(68)

First, observe that Theorem 2.2 implies B is a bijection, so (56b) implies that ε⃗ = 0. Therefore (56a) reduces to finding
u⃗ = (q⃗, u) ∈ U, where b(u⃗, ν⃗) = F (ν⃗) for all ν⃗ ∈ V. This is an equation of the form (34b). Hence, the second item
of Theorem 2.2 implies that L∗u⃗ = (0⃗, v − vh); i.e., we may write u⃗ = (− grad u, u) ∈ H0(L∗) = H(div,Ω) × H1

0 (Ω)
such that u ∈ H1

0 (Ω) satisfies −∆u = v − vh. Now, due to the full regularity estimate (65) applied to u, we have
∥u∥H2(Ω) ≤ C∥v − vh∥L2(Ω).

We may now invoke the complement of Corollary 3.4, [14, Theorem 6]:

Theorem 3.5. Let p ∈ N0, let u⃗ be the solution to (68) for some arbitrary F ∈ V′. Then there exists a constant C, depending
only on p and the shape regularity of Ωh, such that

inf
µ⃗∈Uh

∥u⃗ − µ⃗∥U ≤ Chp+1(
∥u∥Hp+2(Ω) + ∥q⃗∥Hp+1(Ωh)

)
.

Using the fact that q⃗ = − grad u, we now have the estimate

inf
µ⃗∈Uh

∥u⃗ − µ⃗∥U ≤ Ch∥u∥H2(Ω) ≤ Ch∥v − vh∥L2(Ω).

Which is of the same form as (57). Finally, it is clear that assumption (57) holds with c0(h) = h. Then, (67) and Theorem 3.2
imply

∥v − vh∥
2
L2(Ω) = F (v − vh) ≤ Ch∥v − vh∥L2(Ω)

[
inf
ν∈Vh

∥v⃗ − ν⃗∥2
V + inf

µ⃗∈Uh
∥λ⃗− µ⃗∥

2
U

]1/2

,

which provides one higher order of convergence in the L2 norm for the solution component vh.
Ultimately, the upshot of the entire a priori error analysis above is that poor a priori convergence rates are possible with

this method, even for infinitely smooth solutions v, due to the Lagrange multiplier λ, which may not be as smooth (cf.
Section 5.3). Thus, without an adaptive algorithm that helps one capture irregular solutions, the DPG* method is generally
impractical for high-order methods. We therefore proceed by studying a posteriori error control.

4. A posteriori error control

In this section, we will present an abstract a posteriori error estimator valid for all ultraweak DPG* formulations (see
Section 2.3). We then proceed to work out the example of the Poisson problem in full detail. Note that abstract ultraweak
formulations encompass many physical models besides the Poisson example given above. Other important examples with
similar functional settings include convection-dominated diffusion [34,35], Stokes flow [36,37], linear elasticity [19,38],
and acoustics [39–41].

4.1. Designing error estimators for general ultraweak DPG* formulations

Consider the general setting of Section 2.3 and the broken ultraweak DPG* formulation which is proved to be well
posed in Theorem 2.4. Namely, with L set to the general partial differential operator in (29), the problem of finding a
v ∈ H0(L) satisfying Lv = f is reformulated as (39), where

⟨B(µ, ρ), ν⟩V = b((µ, ρ), ν) = (µ,Lhν)Ω + ⟨ρ, ν⟩h,

for all (µ, ρ) ∈ U = L2 × Q (Lh) and ν ∈ V = H(Lh). The DPG* method produces an approximation to v using two
finite-dimensional subspaces Uh ⊂ U and Vh ⊂ V. Let

η(ν) = sup
ρ∈Q (Lh)

⟨ρ, ν⟩h

∥ρ∥Q (Lh)
, ν ∈ Vh. (69)

This quantity can usually be interpreted as a ‘‘jump term’’ in applications. The message of the next theorem is that,
notwithstanding the generality of the operators considered, the design of a posteriori error estimators for all ultraweak
DPG* formulations reduces to obtaining upper and lower bounds for η.

Theorem 4.1. Consider the ultraweak DPG* formulation (39) with G((µ, ρ)) = (f , µ), for some f ∈ L2. Suppose (32) holds
and L∗

: H0(L∗) → L2 is a bijection. Then, for any vh ∈ Vh (not necessarily equal to the DPG* solution),

∥B∥
−1

∥G − B
′vh∥U′ ≤ ∥v − vh∥V ≤ ∥B

−1
∥∥G − B

′vh∥U′ (70)

and, moreover,

∥G − B
′vh∥

2
U′ = ∥Lhvh − f ∥2

Ω + η(vh)2. (71)
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Proof. In view of (39), v − vh satisfies{
RV(v − vh) + B((λ, σ )) = −RVvh,

B
′(v − vh) = G − B

′vh.
(72)

By Theorem 2.4, B is a bijection. Hence, applying the identity (21) of Proposition 2.1 to the system (72), we arrive at

∥v − vh∥V = |||G − B
′vh|||U′= sup

µ∈U

⟨G − B′vh, µ⟩U

|||µ|||U
,

where the second equality comes directly from definition (14). Next, recall that the norms ∥·∥U and ||| · |||U are equivalent.
Indeed, ∥B−1

∥
−1

∥µ∥U ≤ |||µ|||U≤ ∥B∥∥µ∥U, for all µ ∈ U. The first result, (70), now follows immediately.
To arrive at (71), simply observe that

∥G − B
′vh∥

2
U′ = sup

µ∈L2, ρ∈Q (Lh)

⏐⏐(f , µ)Ω − b((µ, ρ), vh)
⏐⏐2

∥(µ, ρ)∥2
U

= sup
µ∈L2, ρ∈Q (Lh)

⏐⏐(f − Lhvh, µ)Ω − ⟨ρ, vh⟩h
⏐⏐2

∥µ∥
2
Ω + ∥ρ∥

2
Q (Lh)

= sup
µ∈L2

⏐⏐(f − Lhvh, µ)Ω
⏐⏐2

∥µ∥
2
Ω

+ sup
ρ∈Q (Lh)

⏐⏐⟨ρ, vh⟩h⏐⏐2
∥ρ∥

2
Q (Lh)

and the second result also follows. □

4.2. A posteriori error analysis for the Poisson example

In this subsection, we develop a computable quantity that is equivalent to the function η defined above, for the example
of the DPG* method for Poisson equation. We then provide a complete analysis of reliability and efficiency of the resulting
error estimator.

Recall the variational formulation derived in Example 2.7 for Poisson’s equation. Its bilinear form (see (45)) is

b((σ⃗ , µ, σ̂n, µ̂), (τ⃗ , ν)) = ((σ⃗ , µ),Lh(τ⃗ , ν))Ω + ⟨µ̂, τ⃗ · n⃗⟩h + ⟨σ̂n, ν⟩h ,

where Lh(ν, τ⃗ ) = (τ⃗−gradh ν, −divhτ⃗ ). In this subsection, we proceed by assuming, for simplicity, that Ω ⊂ R2, and that
Ωh is a geometrically conforming triangular shape-regular mesh. Let E denote the set of all mesh edges and let Eint ⊂ E
be the set of all interior edges of Ωh. Let hE be the length of any edge E ∈ E . Any E ∈ Eint has two adjacent elements K+

and K− such that E = ∂K+
∩ ∂K−. Let

Jτ⃗ · n⃗K = τ⃗K+ · n⃗K+ + τ⃗K− · n⃗K− , Jτ⃗ · n⃗⊥K = n⃗⊥

K+ · τ⃗K+ + n⃗⊥

K− · τ⃗K− .

Here, n⃗⊥

K is the tangential unit vector; i.e., if n⃗K = (n1, n2) then n⃗⊥

K = (−n2, n1). If E ∈ E \ Eint is an exterior edge on
the boundary of an element K , then with n⃗ equal to the outward unit normal on ∂Ω , we simply set Jτ⃗ · n⃗K = τ⃗K · n⃗ and
Jτ⃗ · n⃗⊥K = n⃗⊥

· τ⃗K . Similarly, for any scalar function ν that may be discontinuous across an interface E ∈ Eint, we define

Jνn⃗K = νK+ n⃗K+ + νK− n⃗K−

and set JνK = νK n⃗ on boundary edges E ∈ E \ Eint.
The setting for the DPG* method for the Poisson equation (of Example 2.7), including its discrete spaces Uh,Vh, is

described in Section 3.2. We continue with these settings in this subsection. Let h denote the maximum of hE over all
E ∈ E . When mesh dependent quantities A and B satisfy A ≤ CB, with a positive constant C independent of h, then we
write A ≲ B. When A ≲ B and B ≲ A, then we write A ≂ B. The main result of this subsection is the next theorem.

Theorem 4.2. Under the above settings, suppose (p⃗, v) ∈ V and (p⃗h, vh) ∈ Vh are the exact solution and the discrete DPG*
solution of the Laplace problem, respectively. Then

∥(p⃗, v) − (p⃗h, vh)∥V ≂ ηi(p⃗h, vh)

for i ∈ {1, 2}, where the computable error estimators ηi are defined by

η1(p⃗h, vh)2 =
L(p⃗h, vh) − f

2
Ω

+

∑
E∈Eint

hE
Jp⃗h · n⃗K

2
L2(E) +

∑
E∈E

hE
Jvhn⃗K

2
H1(E) ,

η2(p⃗h, vh)2 =
L(p⃗h, vh) − f

2
Ω

+

∑
E∈Eint

hE
Jp⃗h · n⃗K

2
L2(E) +

∑
E∈E

h−1
E

Jvhn⃗K
2
L2(E) .

The remainder of this subsection is devoted to proving this theorem. The main idea is to apply Theorem 4.1, but some
intermediate results need to be established first. To this end, recall that there exists a H1-norm minimum energy extension
Egrad that provides a continuous right inverse of tr : H1(Ω) → H1/2 (∂Ωh). Indeed, for all ŵ ∈ H1/2 (∂Ωh), Egrad is defined
using the pre-image set tr−1

{ŵ} simply as

Egrad (ŵ) = argmin
w∈tr−1{ŵ}

∥w∥H1(Ω).
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Similarly, for all q̂n ∈ H−1/2 (∂Ωh), the continuous right inverse of trn : H(div,Ω) → H−1/2 (∂Ωh) is defined

Ediv (q̂n) = argmin
q⃗n∈tr−1

n {q̂}

∥ q⃗ ∥H(div,Ω).

Clearly these operators can also be applied element by element.
Before establishing a number of lemmas, we pause to construct two helpful observations. First, for any q̂n ∈ P̂p(∂Ωh),

let q̂E denote the function in P̂p(∂Ωh) that vanishes on all edges of E , except on the edge E where it equals q̂|E . Observe
that Ediv (q̂E) is supported only on ΩE =

⋃
{K ∈ Ωh : meas(∂K ∩ E) ̸= ∅}. Second, let bE denote the edge bubble of E

(i.e., the product of the barycentric coordinates of the endpoints of E) and define P̃0
p+2(∂Ωh) = {µ ∈ tr(Pp+2(Ωh)∩H1

0 (Ω)) :

on any edge E ∈ E , µ|E= rpbE for some rp ∈ Pp(E)}. Likewise, for any µ̂ ∈ P̃0
p+2(∂Ωh), the function Egrad (µ̂) is supported

only on ΩE .
Our first lemma may be thought of as an inf–sup condition involving the space of edge bubbles P̃0

p+2(∂Ωh).

Lemma 4.3. For any degree p ≥ 0 and for any q⃗h ∈ Pp(Ωh)2,∑
E∈Eint

hE

Jq⃗h · n⃗K
2

L2(E)
≲ sup
µ̂∈P̃0p+2(∂Ωh)

⟨q⃗h · n⃗, µ̂⟩
2
h

∥Egrad (µ̂)∥2
H1(Ω)

.

Proof. We shall use the following two estimates that can be proved by scaling arguments using finite dimensionality
(see e.g. [42]). For all ŵ ∈ tr(Pp(Ωh) ∩ H1

0 (Ω)),

∥bEŵ∥
2
L2(E) ≤ ∥ŵ∥

2
L2(E) ≲ (bEŵ, ŵ)E , (73)

|Egrad (bEŵE)|H1(ΩE )≲ h
−1/2
E ∥ŵ∥L2(E), (74)

where (·, ·)E denotes the inner product of L2(E) and ŵE is as defined above. For any q⃗h ∈ Pp(Ωh) with nontrivial Jq⃗h · n⃗KE ,
we have

hE
Jq⃗h · n⃗K

2
L2(E) ≲ hE(bEJq⃗h · n⃗K, Jq⃗h · nK)E by Eq. (73)

≲
(bEJq⃗h · n⃗K, Jq⃗h · n⃗K)E

|Egrad (bEJq⃗h · n⃗KE)|H1(ΩE )
h
1/2
E ∥Jq⃗h · n⃗KE∥L2(E) by Eq. (74),

(75)

which, after canceling h
1/2
E ∥Jq⃗h · n⃗KE∥L2(E) from both sides, provides a local version of the result we want to prove.

To get to the global estimate, we will accumulate the contributions of jumps across each edge. For this, its useful to
observe that for all µ̂ ∈ P̃0

p+2(∂Ωh), we have

|Egrad (µ̂)|
2
H1(Ω) ≲

∑
E∈Eint

|Egrad (µ̂E)|
2
H1(ΩE )

. (76)

This can be seen beginning from the linearity of Egrad and the fact that EK = {E ∈ E : meas(E ∩ ∂K ) ̸= 0} has fixed finite
cardinality:

|Egrad (µ̂)|
2
H1(Ω) =

⏐⏐⏐⏐ ∑
E∈Eint

Egrad (µ̂E)
⏐⏐⏐⏐2
H1(Ω)

=

∑
K∈Ωh

⏐⏐⏐ ∑
E∈Eint

Egrad (µ̂E)
⏐⏐⏐2
H1(K )

=

∑
K∈Ωh

⏐⏐⏐ ∑
E∈EK

Egrad (µ̂E)
⏐⏐⏐2
H1(K )

≲
∑
K∈Ωh

∑
E∈EK

|Egrad (µ̂E)|
2
H1(K ) ≲

∑
E∈Eint

|Egrad (µ̂E)|
2
H1(ΩE )

,

which proves (76).
We can now complete the proof as follows. Starting from (75),∑

E∈Eint

hE

Jq⃗h · n⃗K
2

L2(E)
≲

∑
E∈Eint

(bEJq⃗h · n⃗K, Jq⃗h · n⃗K)2E
|Egrad (bEJq⃗h · n⃗KE)|

2
H1(ΩE )

≤

∑
E∈Eint

sup
µ̂∈P̃0p+2(∂Ωh)

(µ̂E, Jq⃗h · n⃗K)2E
|Egrad (µ̂E)|

2
H1(ΩE )

= sup
µ̂∈P̃0p+2(∂Ωh)

(∑
E∈Eint

(µ̂E, Jq⃗h · n⃗K)E
)2

∑
E∈Eint

|Egrad (µ̂E)|
2
H1(ΩE )

,

where, in the equality, we have exploited a property of suprema over components of a Cartesian product space (noting
that the space P̃0

p+2(∂Ωh) is the Cartesian product of bEPp(E) over all interior edges E). Now, the result follows by noting
that the numerator above equals ⟨µ, q⃗h · n⃗⟩2h and by bounding the denominator using (76) and the Poincaré inequality. □
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Lemma 4.4. For any degree p ≥ 1 and for any wh ∈ Pp(Ωh),∑
E∈Eint

hE

⏐⏐⏐Jwhn⃗K
⏐⏐⏐2
H1(E)

≲ sup
σ̂ ·n⃗∈P̂p(∂Ωh)

⟨σ̂ · n⃗, wh⟩
2
h

∥Ediv (σ̂ · n⃗)∥2
H(div,Ω)

,

where P̂p(∂Ωh) is as defined in (60).

Proof. For any wh ∈ Pp(Ωh) and any E ∈ E , the function Jn⃗⊥
· gradwhK represents the tangential derivative of the jump

of wh across E. Then φE = Egrad (Jgradwh · n⃗⊥KEbE) is supported on ΩE and the trace of φE vanishes on all edges except E.
Let Ωh,E = {K ∈ Ωh : K ⊆ ΩE}. Using the vector curl of the scalar function φE , by an application of (73), we have⏐⏐Jwhn⃗K

⏐⏐2
H1(E) ≲ (bEJn⃗⊥

· gradwhK, Jn⃗⊥
· gradwhK)E =

∫
E
φEJn⃗⊥

· gradwhK =

∑
K∈Ωh,E

∫
∂K
φE n⃗⊥

· gradwh

=

∑
K∈Ωh,E

(curlφE, gradwh)K =

∑
K∈Ωh,E

∫
∂K

n⃗ · curlφEwh = (curlφE, Jwhn⃗K)E,

where we have also used the Stokes and the divergence theorems in succession. Now, noting that ∥ curlφE∥H(div,ΩE ) =

|φE |H1(ΩE ) = |Egrad (Jgradwh · n⃗⊥KEbE)|H1(ΩE )
we deduce using (74) that ∥ curlφE∥H(div,ΩE ) ≲ h

−1/2
E |Jwhn⃗K|H1(E). Hence⏐⏐Jwhn⃗K

⏐⏐2
H1(E) ≲

(curlφE, Jwhn⃗K)E
∥ curlφE∥H(div,ΩE )

∥ curlφE∥H(div,ΩE ) ≲
(curlφE, Jwhn⃗K)E
∥ curlφE∥H(div,ΩE )

h
−1/2
E

⏐⏐Jwhn⃗K
⏐⏐
H1(E).

Together with the minimal extension property ∥Ediv (n⃗ · curlφE)∥H(div,Ω) ≤ ∥ curlφE∥H(div,Ω), this implies that

hE

⏐⏐⏐Jwhn⃗K
⏐⏐⏐2
H1(E)

≲
(curlφE, Jwhn⃗K)E

∥Ediv (n⃗ · curlφE)∥2
H(div,ΩE )

≤ sup
σ̂E ·n⃗∈P̂p(E)

⟨σ̂E · n⃗, wh⟩h

∥Ediv (σ̂E · n⃗)∥2
H(div,ΩE )

,

where P̂p(E) denotes the subspace of functions in P̂p(Ωh) supported on E. We have thus arrived at a local version of the
desired inequality. By proving an analogue of (76) for Ediv , and following along the lines of the proof of Lemma 4.3, we
finish the proof. □

Since the suprema in Lemmas 4.3 and 4.4 are related to the function η in (69), these lemmas can be thought of providing
lower bounds, often called efficiency estimates in the analysis of a posteriori estimators. To prove upper bounds, also called
reliability estimates, we need some additional tools. Recall that any σ⃗ ∈ H(div,Ω) may be decomposed using the so-called
regular decomposition [43, Section 3.3] as σ⃗ = curl(ϕσ⃗ ) + ψ⃗σ⃗ such that

∥ϕσ⃗∥H1(Ω) + ∥ψ⃗σ⃗∥H1(Ω) ≲ ∥σ⃗∥H(div,Ω) .

We shall also need low-regularity commuting quasi-interpolators of [43], built using refinements of earlier ideas in [44,45].
Namely, there exist operators Igrad : H1(Ω) → P1(Ωh) ∩ H1(Ω) and Idiv : H(div,Ω) → RT0(Ωh) ∩ H(div,Ω), such that
curl ◦Igrad = Idiv ◦ curl. Here, RT0(Ωh) = P0(Ωh)2 + x⃗P0(Ωh), the lowest order Raviart–Thomas space. In addition, the
following inequalities [43, Lemma 6] hold for all µ ∈ H1(Ω) and σ⃗ ∈ H(div,Ω):∑

E∈E

h−1
E ∥µ− Igradµ∥

2
L2(E) ≲ ∥µ∥

2
H1(Ω) , (77a)∑

E∈E

h−1
E ∥ϕσ⃗ − Igradϕσ⃗∥

2
L2(E) + h−1

E ∥(ψ⃗σ⃗ − Idivψ⃗σ⃗ ) · n⃗∥2
L2(E) ≲ ∥σ⃗∥

2
H(div,Ω) . (77b)

These results also hold with H1(Ω) replaced by H1
0 (Ω) and H(div,Ω) replaced by H0(div,Ω).

Lemma 4.5. For any degree p ≥ 0 and any q⃗h ∈ Pp(Ωh)2 satisfying ⟨µ̂1, q⃗h · n⃗⟩h = 0 for all µ̂1 ∈ tr(P1(Ωh) ∩ H1
0 (Ω)), we

have ∑
E∈Eint

hE

Jq⃗h · n⃗K
2

L2(E)
≂ sup

µ∈H1
0 (Ω)

⟨µ, q⃗h · n⃗⟩2h
∥µ∥

2
H1(Ω)

. (78)

Proof. By Lemma 4.3,∑
E∈Eint

hE

Jq⃗h · n⃗K
2

L2(E)
≲ sup
µ̂h∈P̃0p+2(∂Ωh)

⟨q⃗h · n⃗, µ̂h⟩
2
h

∥Egrad (µ̂h)∥2
H1(Ω)

≲ sup
µ̂∈H

1/2
0 (∂Ωh)

⟨µ̂, q⃗h · n⃗⟩2h
∥µ̂∥

2
H1/2 (∂Ωh)

= sup
µ∈H1

0 (Ω)

⟨µ, q⃗h · n⃗⟩2h
∥µ∥

2
H1(Ω)

,

where the last identity follows from previous works (see [30] or [7, Theorem 2.3]).
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Hence, it suffices to prove the reverse inequality. Since ⟨Igradµ, q⃗h · n⃗⟩h = 0,

⟨µ, q⃗h · n⃗⟩h = ⟨µ− Igradµ, q⃗h · n⃗⟩h =

∑
E∈Eint

(µ− Igradµ, Jq⃗h · n⃗K)E

≲
∑
E∈Eint

h
−1/2
E ∥µ− Igradµ∥L2(E) h

1/2
E

Jq⃗h · n⃗K

L2(E)

≲ ∥µ∥H1(Ω)

( ∑
E∈Eint

hE

Jq⃗h · n⃗K
2

L2(E)

)1/2

.

Here, in the final line, we have used the Cauchy–Schwarz inequality and (77a). This completes the proof of (78). □

Lemma 4.6. For any degree p ≥ 1 and any wh ∈ Pp(Ωh) satisfying
∫
EJwhn⃗K = 0 on all edges E ∈ E ,∑

E∈E

hE

Jwhn⃗K
2

H1(E)
≂

∑
E∈E

h−1
E

Jwhn⃗K
2

L2(E)
≂ sup

σ⃗∈H(div,Ω)

⟨σ⃗ · n⃗, wh⟩
2
h

∥σ⃗∥
2
H(div,Ω)

. (79)

Proof. The first equivalence in (79) immediately follows from the Poincaré inequality since the mean value of Jwhn⃗K
vanishes. To prove the remaining equivalence, first observe that Lemma 4.4 implies∑

E∈Eint

hE

⏐⏐⏐Jwhn⃗K
⏐⏐⏐2
H1(E)

≲ sup
σ̂ ·n⃗∈P̂p(∂Ωh)

⟨σ̂ · n⃗, wh⟩
2
h

∥Ediv (σ̂ · n⃗)∥2
H(div,Ω)

≤ sup
σ̂ ·n⃗∈H

−1/2 (∂Ωh)

⟨σ̂ · n⃗, wh⟩
2
h

∥σ̂ · n⃗∥2
H

−1/2 (∂Ωh)

= sup
σ∈H(div,Ω)

⟨σ · n⃗, wh⟩
2
h

∥σ∥
2
H(div,Ω)

,

where the final identity is well known (see [7, Theorem 2.3]). This proves one side of the stated equivalence.
To prove the remaining inequality, we start by decomposing any given σ⃗ ∈ H(div,Ω) using above-mentioned regular

decomposition: σ⃗ = curlϕσ⃗ + ψ⃗σ⃗ . Then, since the jump of wh has zero mean value on every edge, we observe that
⟨n⃗ · Idivψ⃗σ⃗ , wh⟩h = ⟨n⃗ · Idiv(curlϕσ⃗ ), wh⟩h = 0. Therefore, by the commutativity property of the quasi-interpolators,

⟨σ⃗ · n⃗, wh⟩h = ⟨n⃗ · (curlϕσ⃗ − Igradϕσ⃗ ), wh⟩h + ⟨n⃗ · (ψ⃗σ⃗ − Idivψ⃗σ⃗ ), wh⟩h.

We proceed labeling the terms on the right as t1 and t2, respectively. Using the divergence theorem and the Stokes theorem
in succession,

t1 = (curl(ϕσ⃗ − Igradϕσ⃗ ), gradwh)Ω

= ⟨ϕσ⃗ − Igradϕσ⃗ , n⃗⊥
· gradwh⟩h =

∑
E∈E

(ϕσ⃗ − Igradϕσ⃗ , Jn⃗⊥
· gradwhK)E

≲
∑
E∈E

h−1/2
E ∥ϕσ⃗ − Igradϕσ⃗∥L2(E) h

1/2
E

⏐⏐⏐Jwhn⃗K
⏐⏐⏐
H1(E)

≲ ∥σ⃗∥H(div,Ω)

(∑
E∈E

hE

⏐⏐⏐Jwhn⃗K
⏐⏐⏐2
H1(E)

)1/2

.

Here, in the final line, we have also used the Cauchy–Schwarz inequality and (77b). The term t2 can be estimated
similarly:

t2 =

∑
E∈E

(ψ⃗σ⃗ − Idivψ⃗σ⃗ , Jwhn⃗K)E ≤

∑
E∈E

h−1/2
E ∥ψ⃗σ⃗ − Idivψ⃗σ⃗∥L2(E)h

1/2
E

Jwhn⃗K

L2(E)

≲ ∥σ⃗∥H(div,Ω)

(∑
E∈E

hE

Jwhn⃗K
2

L2(E)

)1/2

.

Thus, the proof of the remaining inequality is complete:

⟨σ⃗ · n⃗, wh⟩
2
h

∥σ⃗∥
2
H(div,Ω)

=
(t1 + t2)2

∥σ⃗∥
2
H(div,Ω)

≲
∑
E∈E

hE

Jwhn⃗K
2

L2(E)
. □

Proof of Theorem 4.2. The DPG* solution (p⃗h, vh) satisfies the equations of (59) for all (τ⃗ , ν) ∈ Vh and all (σ⃗ , µ, σ̂n.µ̂) ∈ Uh.
In particular, (59b) implies that ⟨p⃗h · n⃗, µ̂⟩h = ⟨vh, σ̂n⟩h = 0. Hence the conditions of Lemmas 4.5 and 4.6 are satisfied.
The conclusions of these lemmas show that the η in Theorem 4.1 satisfies

η((p⃗h, vh)) ≂
∑
E∈Eint

hE
Jp⃗h · n⃗K

2
L2(E) +

∑
E∈E

hE
Jvhn⃗K

2
H1(E)

and, moreover, the last term may be replaced by h−1
E

Jvhn⃗K
2
L2(E), if we please. Hence an application of Theorem 4.1

completes the proof. □
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5. Numerical experiments

In order to verify the mathematical theory developed above, we conducted several standard numerical verification
experiments using two finite element software packages which have been used extensively for implementing DPG
methods. In our first set of experiments, we used Camellia [46–48], a user-friendly C++ toolbox developed by Nathan
V. Roberts which itself relies on Sandia’s Trilinos library of packages [49]. Specifically, Camellia was used for the a priori
convergence rate verification on the model square domain Ω□ = [0, 1]2 reported on in Section 5.3. In our second set of
experiments, we used hp2D, a sophisticated suite of Fortan routines with support for 2D local hierarchical and anisotropic
h- and p-refinements on hybrid meshes [50] and corresponding oriented embedded shape functions for both quadrilateral
and triangular elements in each of the canonical 2D de Rham sequence energy spaces [51]:

H1(K )
grad

−−−→ H(rot, K )
rot

−−→ L2(K ) and H1(K )
curl

−−→ H(div, K )
div

−−→ L2(K ) .

hp2D was used to implement a simple hp-adaptive algorithm for a singular solution to Poisson’s equation on the canonical
L-shaped domain, Ω = (−1, 1)2 \ [0, 1] × [−1, 0]; see Section 5.4. This experiment parallels a similar study with the
analogous DPG method in [30].

5.1. Set-up

Let Ω ∈ {Ω□,Ω } and let ΓD,ΓN be disjoint and relatively open subsets comprising ∂Ω; ΓD ∩ΓN = ∅, ΓD ∪ ΓN = ∂Ω .
All of our experiments investigate some form of Poisson’s equation:⎧⎪⎪⎨⎪⎪⎩

−∆v = f in Ω ,

v = v0 on ΓD ,

∂v

∂n
= pn on ΓN ,

(80)

where the load f ∈ L2(Ω) and the boundary data v0 and pn are appropriately smooth.
As before, let Ωh denote the mesh subordinate to Ω and let E denote the corresponding collection of edges. In each of

our experiments, we only considered piecewise-affine two-dimensional domainsΩ ∈ {Ω□,Ω } subdivided into quadtree
meshes consisting of either fully geometrically conforming or 1-irregular quadrilateral elements K ∈ Ωh.4 During stiffness
matrix assembly, the degrees of freedom of every element edge with a hanging node was constrained by its common
edge. Alternatively, because of the ultraweak variational formulation we considered, we could have incorporated each
edge independently [46,52].

For each quadrilateral element K ∈ Ωh, we associated a unique (anisotropic) polynomial order pK , qK ≥ 1, respectively.
Each associated polynomial order can be naturally related to a (pK , qK )-order conforming finite element de Rham sequence.
For instance, begin with the standard Nédélec spaces of the first type,

QpK ,qK (K )
curl

−−→ QpK ,qK−1
× QpK−1,qK (K )

div
−−→ QpK−1,qK−1(K ) ,

where QpK ,qK (K ) is the space of bivariate polynomials over K with degree at most pK horizontally and qK vertically. Now,
consider the mesh-dependent sequence Whp

curl
−−→ Vhp

div
−−→ Yhp, where

Whp = {w ∈ H1
0 (Ω) : w|K∈ QpK ,qK (K ) ∀K ∈ Ωh} ,

Vhp = {q⃗ ∈ H(div,Ω) : q⃗|K∈ QpK ,qK−1(K ) × QpK−1,qK (K ) ∀K ∈ Ωh} ,

Yhp = {w ∈ L2(Ω) : w|K∈ QpK−1,qK−1(K ) ∀K ∈ Ωh} .

We define the (isotropic) uniform-p trial space to be Uh = Yhp × Y 2
hp × tr(Whp) × trn(Vhp), where pK = qK = p is fixed for

all K ∈ Ωh. Similarly, the corresponding (anisotropic) hp trial space is defined Uh = Yhp × Y 2
hp × tr(Whp) × trn(Vhp), where

pK and qK are allowed to vary freely throughout the mesh. With the latter definition, notice that the polynomial order of
an hp interface function, when restricted to a single shared edge E ∈ E , E =

⋂
K∩E ̸=∅

K , will naturally be restricted by the
lowest polynomial order of all elements K ∩ E ̸= ∅ sharing the edge.5

For the test functions, define the spaces

W̃hp,dp = {v ∈ H1(Ωh) : v|K∈ QpK+dp,qK+dp(K ) ∀K ∈ Ωh} ,

Ṽ hp,dp = {q⃗ ∈ H(div,Ωh) : q⃗|K∈ QpK+dp,qK+dp−1(K ) × QpK+dp−1,qK+dp(K ) ∀K ∈ Ωh} .

In all of our numerical experiments, we used Vh = W̃hp,dp × Ṽ hp,dp where dp ∈ {0, 1, 2}.

4 Although many of the preceding results are proven only for triangular meshes, the numerical experiments documented in this section verify
alternative results in the setting of quadrilateral elements, which we understand to be similar.
5 Such a mesh obeys the so-called minimum rule.
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5.2. Adaptive mesh refinement

In our experiments with h- and hp-adaptive mesh refinement, we used a standard isotropic h-subdivision rule.
Namely, at each refinement step, each element marked for h-refinement was uniformly subdivided into four equal-order
quadrilateral elements. Afterward, a standard so-called ‘‘mesh closure’’ algorithm was called to induce a small number of
additional isotropic h-subdivisions of neighboring elements in order to ensure 1-irregularity of the mesh. Alternatively, at
each refinement step, the polynomial order of any p-refinement marked element was isotropically incremented by one,
(pK , qK ) ↦→ (pK + 1, qK + 1), and then the order of all elements neighboring a p-refinement marked element was also
isotropically incremented by one.

Recall that EK = {E ∈ E : meas(∂K ∩ E) ̸= ∅} and define EK ,int = EK ∩ Eint. Recalling the global error estimator η1(v⃗h)
appearing in Theorem 4.2, define a refinement indicator ηK ∈ R≥0 for each K ∈ Ωh, viz.,

ηK =

(
∥Lv⃗h − f ∥2

L2(K ) +

∑
E∈EK ,int

hE
Jp⃗h · n⃗K

2
L2(E) +

∑
E∈EK

hE
Jvhn⃗K

2
H1(E)

)1/2

.

In element marking, we followed the so-called ‘‘greedy’’ algorithm. That is, at each refinement step, all elements K ∈ Ωh
whose refinement indicator ηK was above 50% of the maximum over all elements in the mesh, ηmax = maxK∈Ωh ηK , was
marked for refinement. In the case of what we call h-adaptive mesh refinement, every marked element was h-refined, as
described above, i.e. no elements were p-refined. Alternatively, in the case of hp-adaptive mesh refinement, a common
flagging strategy [53] was used to decide whether to h or p refine; see Section 5.4.

5.3. Pure Dirichlet boundary conditions on a square domain

Recall (80). In this first example, Ω = Ω□ and ΓD = ∂Ω . We considered two seemingly benign cases for the loads:
(i) f = 2π2 sin(πx) sin(πy) and v0 = 0; and (ii) f = 0 and v0 = 1. In both cases, the exact solution is infinitely smooth.
Indeed, in case (i), v = sin(πx) sin(πy) and, in case (ii), v = 1. We first consider DPG* methods and then LL∗ methods.

5.3.1. The DPG* method
Recall from Theorem 3.1 that the best approximation error of a DPG* method involves the Lagrange multiplier

λ⃗ = (ζ⃗ , λ, ζ̂n, λ̂) as well as the DPG* solution variable v⃗ = (p⃗, v). Assume that v is smooth. With the norm ∥(τ⃗ , ν)∥2
V =

∥τ⃗∥2
H(div,Ωh)

+ ∥ν∥2
H1(Ωh)

, λ solves{
−∆λ = g in Ω ,

λ = 0 on ∂Ω ,
(81)

where g = v−2∆v+∆2v. Indeed, recall (61) and observe that −∆λ = −∆f −∆e = ∆(∆v)+ (v+2f ) = v−2∆v+∆2v.
Here, we have also used that −∆v = f and −∆e = v + 2f . In case (i), g = (1 + 4π2

− 4π4) sin(πx) sin(πy), meanwhile,
in case (ii), g = 1. Notice that g ∈ C∞(Ω) in both cases.

In the first case, λ can easily be shown to be a constant scalar multiple of sin(πx) sin(πy) and so λ ∈ C∞(Ω) is infinitely
smooth. Therefore, by Corollary 3.4, the convergence rate of the DPG* method under uniform h-refinement will be limited
only by the underlying de Rham sequence polynomial order p. Indeed, Fig. 5.1(A) demonstrates the convergence of the
corresponding discrete solution v⃗h = (p⃗h, vh) to the exact solution, v⃗ = (grad v, v), measured in the full test norm above,
starting with an single-element mesh with (isotropic) polynomial order pK = qK = p ∈ {1, 2, 3, 4}. Fig. 5.1(B) presents
the convergence of only the solution variable vh, measured in the L2(Ω)-norm. Although both figures correspond only to
a test space enrichment of dp = 1, similar results were observed for each choice dp ∈ {0, 1, 2}.

In the second case, due to the shape of the domain, we can guarantee that λ ∈ H3(Ω) but, ultimately, the corresponding
Lagrange multiplier λ /∈ C∞(Ω) is still not infinitely smooth.6 Therefore, with this problem, the DPG* method experiences
rate-limited convergence under uniform h-refinements. This is evidenced by Fig. 5.2. However, as demonstrated by Fig. 5.3,
using the greedy h-refinement strategy from Section 5.2, optimal convergence rates can still be recovered through adaptive
mesh refinement. See Fig. 5.4 for a visual depiction of the solution of the corresponding auxiliary problem (81) as well as
the corresponding adaptively refined mesh.

Remark 5.1. Previously in this subsection, we remarked that similar results were observed for each test space enrichment
parameter dp ∈ {0, 1, 2} that we chose in our numerical experiments analyzing case (i). Similarly, in case (ii), the behavior
documented above was nearly indistinguishable for each dp ≥ 1. However, when dp = 0 we observed unexpected effects
which we repeatedly verified with independent implementations of the method. Indeed, starting from a mesh consisting
of a single square element of order p and subsequently performing uniform h-refinements, the exact solution v = 1

6 Standard elliptic regularity theory can be used to show that λ ∈ C∞(Ω) is, however, infinitely smooth in the interior of the domain [33].
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Fig. 5.1. Convergence under h-uniform mesh refinements with the manufactured solution v(x, y) = sin(πx) sin(πy). (Here, dp = 1.)

Fig. 5.2. Convergence under h-uniform mesh refinements with the manufactured solution v(x, y) = 1. (Here, dp = 1.)

Fig. 5.3. Convergence under h-adaptive mesh refinements with the manufactured solution v(x, y) = 1. (Here, dp = 1.)

was repeatedly reproduced up to machine zero, no matter the polynomial order p ∈ {1, 2, 3, 4} considered. In testing
more complicated manufactured solutions (not documented here) which also feature a singular Lagrange multiplier λ,
we discovered superconvergence effects from this choice of enrichment parameter. Indeed, in our numerous additional
verification experiments with dp set to zero, the method overcame the rate-limited behavior illustrated in Fig. 5.2. This
peculiar superconvergence artifact cannot be explained by the theory presented in this paper. Notably, this artifact also
agrees with previous results seen with a DPG* method for acoustic wave equations which can be found in the original
technical report on the method [54] (which portions of this text are based off of) and clearly warrants further analysis.
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Fig. 5.4. Left: The DPG* solution variable λ when v = 1. (Color scale represents the solution values.) Right: The corresponding quadtree mesh coming
from the h-adaptive algorithm after ten refinements. (Here, p = 4 and dp = 1.)

Fig. 5.5. Convergence under h-uniform mesh refinements with the LL∗ method.

5.3.2. Comparison with the LL∗ method
Consider the operator L:H(div,Ω) × H1(Ω) → (L2(Ω))d × L2(Ω) defined in (40), and its adjoint, L∗:H(div,Ω) ×

H1(Ω) → (L2(Ω))d × L2(Ω), defined in (41):

L(p⃗, v) = (p⃗ − grad v,−divp⃗), L∗(σ⃗ , µ) = (σ⃗ + gradµ, divσ⃗ ).

One may write an LL∗ formulation of Poisson’s equation (80), with ΓD = ∂Ω , in the following way:

(L∗(ζ⃗ , λ),L∗(σ⃗ , µ))Ω = (f , µ)Ω + ⟨v0, σ⃗ · n⃗⟩H−1/2(∂Ω), (82)

for all (σ⃗ , µ) ∈ H(div,Ω)×H1
0 (Ω). After solving (82) for the unique (ζ⃗ , λ) ∈ H(div,Ω)×H1

0 (Ω), the solution to (80) may
be recovered by simply applying the adjoint operator to the Lagrange multiplier; L∗(ζ⃗ , λ) = (p⃗, v) = (grad v, v).

It is instructive to write out the strong form of the equations for ζ⃗ and λ, which are implied by (82):⎧⎪⎪⎪⎨⎪⎪⎪⎩
ζ⃗ + grad λ− grad divζ⃗ = 0⃗ in Ω,

−divζ⃗ −∆λ = f in Ω,
λ = 0 on ∂Ω,

divζ⃗ = v0 on ∂Ω.

(83)

By simply substituting the following expressions into (83), the reader may verify that the unique Lagrange multipliers ζ⃗
and λ can also be written

−∆λ = f + v, ζ⃗ = − grad λ+ grad v,

where v is the unique solution of (80).
We can now see that the LL∗ method has precisely the same rate-limited behavior as the DPG* method. Indeed,

consider the following two loading scenarios again: (i) f = 2π2 sin(πx) sin(πy) and v0 = 0; and (ii) f = 0 and v0 = 1.
In case (i), both v, λ ∈ C∞(Ω) are infinitely smooth. On the other hand, in case (ii), λ ∈ H3(Ω) but λ ̸∈ C∞(Ω), even
though the solution of (80), v = 1, is just a constant function. The numerical evidence in Fig. 5.5 demonstrates that the
convergence rate of the LL∗ method is affected in case (ii). One may also compare this outcome with [11, Theorem 6.1],
which guarantees optimal convergence rates only under the assumption that the Lagrange multiplier is sufficiently smooth.
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Fig. 5.6. (A) : Comparison of the convergence of various refinement strategies when dp = 1. (B) : Convergence of the error in the DPG* solution
variable v⃗h and the error estimator η(v⃗h) for two values of dp with the hp-adaptive algorithm.

Fig. 5.7. Left: The DPG* solution v. (Color scale represents solution values.) Right: The corresponding hp quadtree mesh found by the hp-adaptive
algorithm after fifteen refinements. (Colors represent polynomial degrees p.)

Remark 5.2. Many LL∗ formulations contain additional terms involving a (two- or three-dimensional) curl operator.
Such terms arise due to the general fact that curl p⃗ = curl grad v = 0⃗, thus allowing H(div,Ω) to be replaced by
H(div,Ω)∩H(curl,Ω) ⊂ (H1(Ω))d in the domains of the differential operators above. This space facilitates the use of C0

piecewise polynomial finite element bases when the solution is sufficiently regular. Nevertheless, enforcing the additional
equation curl p⃗ = 0⃗ also requires introducing additional ‘‘slack’’ variables which make the ultimate expression for the new
operators L and L∗ much more complicated. The analysis above can easily be repeated in such scenarios, but the outcome
of limited convergence rates will not change.

5.4. Mixed boundary conditions on an L-shaped domain

Again, recall (80). In this final example, set Ω = Ω , ΓD = [0, 1) × {0} ∪ {0} × [0,−1), and v0 = 0. Additionally, set
pn to be the normal derivative of the exact solution v(r, θ ) = r2/3 sin( 23θ ). For this problem, it is well known that the
solution v ∈ H1+s(Ω), for all s < 2/3.

In each of our experiments, we began with a single three-element mesh composed of congruent squares and uniform
order pK = qK = 2 and dp = 1 in all three elements. Fig. 5.6(A) demonstrates the convergence of the solution error
we witnessed under h-uniform, h-adaptive (as described above), and hp-adaptive refinements using a flagging strategy
where all marked element adjacent to the origin (i.e. the singular point) are h-refined and all other marked elements are
p-refined. As shown in Fig. 5.6(B), the error estimator η(v⃗h) generally overestimated the solution error and the dependence
upon dp was not seen to be roundly significant. Fig. 5.7 depicts both the computed solution and the hp mesh after fifteen
refinement steps.
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